BZOJ1965: [Ahoi2005]SHUFFLE 洗牌

Portal

由样例可以得到 1>2,2>4,3>6,4>1,5>3,6>5 .
可以得出一次洗牌后 pos[i]=(2i)mod(n+1)
那么经过 m 次洗牌后,初始位置为x移动到了位置 (2mx)modn+1
最后也就是求不定方程 2mxLmod(n+1) 最小正整数解。

快速幂+快速乘( LX 会爆 longlong

【代码】

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <map>
#define N 10000005
#define INF 0x7fffffff
using namespace std;
typedef long long ll;
typedef pair<int,int> pa;

ll read()
{
    ll x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
    while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
    return x*f;
}

ll n,m,L,X,Y;

ll Qpow(ll x,ll y)
{
    ll rtn=1;
    while(y)
    {
        if(y&1) rtn=rtn*x%n;
        x=x*x%n;y>>=1;
    }
    return rtn;
}

ll Qmul(ll x,ll y)
{
    ll rtn=0;
    while(y)
    {
        if(y&1) rtn=(rtn+x)%n;
        x=(x<<1)%n;y>>=1;
    }
    return rtn;
}

ll exgcd(ll a,ll b,ll &x,ll &y)
{
    ll rtn=a;
    if(b) {
        rtn=exgcd(b,a%b,y,x);
        y-=(a/b)*x;
    }
    else x=1,y=0;
    return rtn;
}

int main()
{
    n=read()+1,m=read(),L=read();
    ll Gcd=exgcd(Qpow(2,m),n,X,Y);
    X=Qmul(X,L);
    while(X<=0) X+=n/Gcd;
    printf("%lld\n",X);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值