题目大意:给出一棵树,每条边上都有一个长度不超过10的字符串。给出m个询问x y ch,求x到y的路径有多少个字符串的前缀是ch
题解:首先差分一下,把(x,y)变成
(1,x)+(1,y)−2(1,lca)
用可持久化Trie树维护每个点到根的所有串,这样树上节点就不会超过所有串总长
记一个size表示在其子树中有多少个串
查询的时候把询问串跑一遍输出size即可
我的收获:套路++
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=100005;
const int L=20;
int n,m;
int t,head[N];
int root[N];
int dep[N],fa[N][L+2];
char s[N][13],T[N];
struct edge{int to,nex,id;}e[N<<1];
void add(int u,int v,int i){e[t].to=v,e[t].nex=head[u],e[t].id=i,head[u]=t++;}
struct Trie{
#define idx(i) i-'a'
int cnt,sum[N*10],c[N*10][26];
void insert(int x,int &y,int id){
int len=strlen(s[id]),w=y=++cnt;
for(int i=0;i<len;i++){
memcpy(c[w],c[x],sizeof(c[x]));
x=c[x][idx(s[id][i])];
w=c[w][idx(s[id][i])]=++cnt;
sum[w]=sum[x]+1;
}
}
int query(int x){
int len=strlen(T);
for(int i=0;i<len;i++) x=c[x][idx(T[i])];
return sum[x];
}
}Tree;
void dfs(int x)
{
for(int i=1;i<=L;i++) fa[x][i]=fa[fa[x][i-1]][i-1];
for(int i=head[x];i!=-1;i=e[i].nex){
int v=e[i].to;
if(v==fa[x][0]) continue;
fa[v][0]=x,dep[v]=dep[x]+1;
root[v]=root[x];Tree.insert(root[x],root[v],e[i].id);
dfs(v);
}
}
int lca(int x,int y)
{
if(dep[x]<dep[y]) swap(x,y);
for(int i=0;i<=L;i++) if((dep[x]-dep[y])&(1<<i)) x=fa[x][i];
if(x==y) return x;
for(int i=L;i>=0;i--) if(fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
return fa[x][0];
}
void work()
{
scanf("%d",&m);
for(int u,v,i=1;i<=m;i++){
scanf("%d%d%s",&u,&v,T);
int pr=lca(u,v);
printf("%d\n",Tree.query(root[u])+Tree.query(root[v])-2*Tree.query(root[pr]));
}
}
void init()
{
scanf("%d",&n);memset(head,-1,sizeof(head));
for(int u,v,i=1;i<n;i++) scanf("%d%d%s",&u,&v,s[i]),add(u,v,i),add(v,u,i);
dfs(1);
}
int main()
{
init();
work();
return 0;
}