2395: [Balkan 2011]Timeismoney

题目链接

题目大意:n个点m条边的无向图,每条边有权值c和v,选出一个生成树,最小化 cv

题解:膜题解

我的收获:数形结合套路

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#define LL long long
using namespace std;
int n,m,f[205];
struct edge
{
    int x,y,t,c;
    LL v;
}e[100005];
struct Point
{
    LL x,y;
}ans,A,B;
bool cmp(edge a,edge b)
{
    return a.v<b.v;
}
int Getfather(int x)
{
    return f[x]==x?x:f[x]=Getfather(f[x]);
}
Point Kruscal()
{
    Point p=(Point){0,0};
    sort(e+1,e+1+m,cmp);
    for (int i=1;i<=n;i++)
        f[i]=i;
    int now=1;
    for (int i=1;i<=m;i++)
    {
        int fx=Getfather(e[i].x),fy=Getfather(e[i].y);
        if (fx==fy) continue;
        p.x+=e[i].c,p.y+=e[i].t;
        f[fx]=fy;
        now++;
        if (now==n) break;
    }
    if ((ans.x*ans.y==p.x*p.y&&p.x<ans.x)||ans.x*ans.y>p.x*p.y)
        ans=p;
    return p;
}
LL Cross(Point a,Point b,Point c)
{
    return (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y);
}
void Solve(Point a,Point b)
{
    LL y=a.y-b.y,x=b.x-a.x;
    for (int i=1;i<=m;i++)
        e[i].v=1LL*e[i].c*y+1LL*e[i].t*x;
    Point p=Kruscal();
    if (Cross(p,a,b)>=0) return;
    Solve(a,p);
    Solve(p,b);
}
int main()
{
    ans.x=1e9,ans.y=1e9;
    scanf("%d%d",&n,&m);
    for (int i=1;i<=m;i++)
        scanf("%d%d%d%d",&e[i].x,&e[i].y,&e[i].c,&e[i].t),
        e[i].x++,e[i].y++,e[i].v=e[i].c;
    A=Kruscal();
    for (int i=1;i<=m;i++)
        e[i].v=e[i].t;
    B=Kruscal();
    Solve(A,B);
    printf("%lld %lld\n",ans.x,ans.y);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值