2023第十二届“认证杯”C题:雪崩预测|数学中国数学建模国际赛(小美赛)| 建模秘籍&文章代码思路大全

铛铛!小秘籍来咯!

小秘籍希望大家都能轻松建模呀,数维杯也会持续给大家放送思路滴~

抓紧小秘籍,我们出发吧~

来看看认证杯(C题)!
在这里插入图片描述

完整内容可以在文章末尾领取!

题目重述

题目一:雪崩风险预测模型的建立

雪崩是一种极具危险性的自然灾害,预测雪崩发生的风险对于采取预防措施至关重要。我们希望建立一个雪崩风险预测模型,以确定雪崩发生的可能性。请完成以下任务:

  1. 确定参数: 找到有用且易测量的参数,用于评估雪崩发生的风险。这些参数可以包括但不限于气温、陡坡度、积雪深度、植被覆盖、地形复杂性等。

  2. 建立预测模型: 使用选定的参数,建立一个机器学习模型,例如随机森林,以预测雪崩发生的可能性。确保模型能够适应不同环境条件和提供良好的性能。

  3. 模型评估与调优: 对建立的模型进行评估,使用合适的评估指标(例如均方根误差),并进行必要的调优,以提高模型的准确性和可靠性。

  4. 结果解释: 提供对模型结果的解释,明确各参数对雪崩发生可能性的影响程度,以支持决策制定。

题目二:人工爆炸触发雪崩的时机、位置和威力确定

人工爆炸触发是一种预防雪崩的有效手段。我们希望确定人工爆炸触发雪崩的最佳时机、位置和爆炸威力。完成以下任务:

  1. 确定影响因素: 找到影响人工爆炸触发雪崩效果的关键因素,例如陡坡度、积雪深度、爆炸物类型等。

  2. 建立时序预测模型: 使用时间序列模型(例如长短时记忆网络 LSTM)建立预测模型,以确定人工爆炸触发雪崩的合适时机、位置和威力。

  3. 模型训练与调优: 对建立的时序预测模型进行训练,使用历史数据进行验证,并进行必要的调优,以提高模型的准确性。

  4. 安全性考虑: 在确定爆炸触发计划时,确保考虑人员安全和生态环境的保护,避免不必要的风险。

  5. 实地验证与调整: 对模型的预测结果进行实地验证,根据实际情况对模型进行调整,确保其在实际应用中的有效性。

任务1

本题使用卷积神经网络来建模
卷积神经网络(CNN):

卷积神经网络(Convolutional Neural Network,CNN)是一类专门用于处理具有类似网格结构数据的深度学习模型。最初广泛应用于计算机视觉任务,如图像识别和分类,随后被用于处理其他类型的数据,例如时序数据和自然语言处理。

主要组成部分:

  1. 卷积层(Convolutional Layer):

    • 卷积层是CNN的核心,通过卷积操作学习输入数据的空间层次结构。
    • 卷积操作包括在输入数据上滑动一个称为卷积核的小窗口,并计算窗口内数据与卷积核之间的加权和。
    • 多个卷积核可以捕捉不同的特征,例如边缘、纹理等。
  2. 激活函数(Activation Function):

    • 在卷积层后通常会添加激活函数,如ReLU(Rectified Linear Unit),以引入非线性变换,增强模型的表示能力。
  3. 池化层(Pooling Layer):

    • 池化层用于降低数据维度,减小计算量,并提取更显著的特征。
    • 常见的池化操作包括最大池化和平均池化。
  4. 全连接层(Fully Connected Layer):

    • 在提取特征后,通过全连接层将高层次特征整合,用于进行最终的分类或回归任务。
  5. 损失函数(Loss Function):

    • 用于衡量模型输出与实际标签之间的差异,常见的损失函数包括交叉熵、均方误差等。
  6. 优化器(Optimizer):

    • 优化器用于更新模型参数,以最小化损失函数。Adam、SGD等是常用的优化算法。

特点和优势:

  • 局部感知性: CNN通过卷积核的局部感知性,能够有效捕捉输入数据的局部特征。
  • 参数共享: 卷积核的参数在整个输入上共享,减少了参数数量,提高了模型的训练效率和泛化能力。
  • 平移不变性: 卷积操作使得模型对平移具有一定的不变性,提高了对物体在图像中位置的识别能力。
  • 适用于大规模数据: CNN在大规模数据集上表现优异,可以通过迁移学习应用于不同领域的任务。

卷积神经网络已经成为深度学习领域的经典模型,在图像处理、计算机视觉和其他领域取得了卓越的成就。其灵活性和高性能使其适用于多种任务的特征学习和模式识别。

建模思路

  1. 数据准备:

    • 收集多模态数据,包括气象数据(温度、降雪量等)、地形信息(海拔、坡度)、陡坡度、积雪深度等。
    • 将数据进行归一化或标准化,确保各个特征处于相同的数值范围。
  2. 数据标签:

    • 制定雪崩风险标签,可以根据历史雪崩记录,将某地点和某时刻的雪崩与否作为标签。
  3. CNN结构设计:

    • 构建卷积神经网络结构,考虑多通道输入(多模态数据)。以下是一个简化的例子:
      输入层(多通道数据)
      |
      卷积层1 + 激活函数(ReLU)
      |
      池化层1
      |
      卷积层2 + 激活函数(ReLU)
      |
      池化层2
      |
      全连接层1
      |
      全连接层2 + 激活函数(Sigmoid)
      
    • 各层的卷积核数量、池化方式、全连接层节点数等可以根据问题复杂度进行调整。
  4. 数据增强:

    • 对训练数据进行数据增强,包括随机旋转、翻转、缩放等操作,以增加模型的鲁棒性。
  5. 模型训练:

    • 定义损失函数:二分类问题通常使用交叉熵损失函数。
    • 选择优化器(如Adam优化器)和学习率,并进行模型编译。
    • 使用训练集进行模型训练。
  6. 模型评估与调优:

    • 使用验证集进行模型评估,监控损失函数和准确率。
    • 根据验证集的表现调整超参数,例如卷积核大小、层数等,以提高模型性能。
  7. 解释性分析:

    • 利用可解释性技术,如Gradient-weighted Class Activation Mapping (Grad-CAM),可视化模型在输入上的激活区域,帮助理解模型的决策过程。
  8. 模型测试:

    • 使用测试集进行最终模型评估,确保模型在未见过的数据上的泛化性能。
  9. 部署和监控:

    • 部署模型用于实际应用,并建立监控机制,及时发现模型性能下降或失效。
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from tensorflow.keras.optimizers import Adam

# 示例数据(请替换成实际的数据)
data = {
    'Slope_Angle': [25, 30, 20, 15, 18, 22, 28, 35, 40],
    'Snow_Depth': [50, 45, 60, 35, 70, 40, 30, 55, 25],
    'Explosive_Type': [1, 2, 1, 2, 1, 2, 1, 2, 1],  # 1表示类型1,2表示类型2
    'Avalanche_Label': [0, 1, 0, 1, 0, 1, 0, 1, 0]  # 0表示未发生雪崩,1表示发生雪崩
}

# 创建DataFrame
df = pd.DataFrame(data)

# 特征和标签
X = df[['Slope_Angle', 'Snow_Depth', 'Explosive_Type']]
y = df['Avalanche_Label']

# 数据预处理
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 数据分割为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

# 构建卷积神经网络模型
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(3, 1, 1)))
#见完整版

任务2

问题二:人工爆炸触发雪崩的时机、位置和威力确定
本题选择使用Prophet时序预测模型

Prophet时序预测模型

Prophet是由Facebook开发的开源时序预测工具,专门用于处理具有季节性和趋势性的时序数据。它被设计为简单易用,适用于各种领域的时序预测问题。

主要特点和优势:

  1. 可解释性:

    • Prophet模型提供了可解释性强的预测结果,用户可以直观地理解模型对季节性和趋势性的拟合情况。
  2. 处理缺失数据:

    • Prophet能够处理时间序列中的缺失数据,使其更具鲁棒性。
  3. 自适应性:

    • Prophet能够自适应地捕捉数据中的年度季节性和趋势性,无需用户手动指定。
  4. 支持假期效应:

    • 用户可以指定特殊的假期效应,使模型在预测时能够考虑到这些特殊事件对数据的影响。
  5. 强大的趋势拟合:

    • Prophet使用具有灵活性的非线性趋势拟合,对于具有复杂趋势的数据具有很好的拟合效果。
  6. 可扩展性:

    • Prophet支持并行计算,使其在处理大规模时序数据时表现出色。

Prophet的基本组成部分:

  1. 趋势(Trend):

    • 指数据中的长期变化趋势,可以是线性或非线性的。
  2. 季节性(Seasonality):

    • 描述数据中的重复性模式,可以包括每周、每月或每年的季节性。
  3. 假期效应(Holiday Effects):

    • 用户可以添加特殊假期的效应,以考虑这些假期对数据的影响。
  4. 自定义季节性(Custom Seasonality):

    • 允许用户添加自定义的季节性效应,增强对特定季节性模式的建模。

Prophet的使用步骤:

  1. 数据准备:

    • 整理时序数据,确保包含"ds"(日期时间戳)和"y"(目标变量)。
  2. 模型构建:

    • 创建Prophet模型,并添加趋势、季节性、假期效应等组成部分。
  3. 模型训练:

    • 使用历史数据对Prophet模型进行训练。
  4. 模型预测:

    • 利用训练好的Prophet模型进行未来时刻的预测。
  5. 结果解释与可视化:

    • 解释模型对于趋势、季节性和假期效应的拟合情况。
    • 使用内置的可视化工具,直观地呈现预测结果。

Prophet模型在处理具有强烈季节性和趋势性的时序数据时表现出色,适用于多个领域,包括金融、气象、销售等。

任务2建模思路:

  1. 数据准备:

    • 收集与人工爆炸触发雪崩相关的时序数据,包括时间、陡坡度、积雪深度、地形信息、爆炸物类型等。
    • 数据中应包含雪崩触发记录的时间戳和相关的观测数据。
  2. 数据整理与特征工程:

    • 将数据整理成适用于Prophet模型的格式,即包含"ds"(日期时间戳)和"y"(目标变量,如触发与否)。
    • 根据领域知识进行特征工程,提取与目标相关的特征。
  3. Prophet模型应用:

    • 使用Facebook Prophet时序预测模型,该模型专门用于处理具有季节性和趋势性的时序数据。
    • Prophet模型能够自动识别周、年度季节性,并考虑特定假期效应,适用于对于具有明显周期性的天气或地理数据。
  4. 模型训练:

    • 利用历史数据进行Prophet模型的训练。
    • 调整模型参数,如季节性的先验尺度、节假日效应等。
  5. 模型预测:

    • 利用训练好的Prophet模型对未来时刻进行预测,包括雪崩触发的时机、位置和威力。
  6. 结果解释与可视化:

    • 解释Prophet模型对于季节性、趋势性和假期效应的识别。
    • 可视化模型预测结果,包括雪崩触发时机、位置和威力的时序图。
  7. 安全性考虑:

    • 在建模和预测时,确保考虑人员安全和生态环境的保护。
    • 制定模型输出的阈值,确保人工爆炸触发的决策是安全的。
  8. 实地验证与调整:

    • 对Prophet模型的预测结果进行实地验证,根据实际情况对模型进行调整,以确保其在实际应用中的有效性。

Prophet模型的优势在于其能够较好地处理具有强烈季节性和趋势性的时序数据,同时提供直观的可视化结果,有助于更好地理解雪崩触发的规律。

# 安装 fbprophet
# pip install fbprophet

import pandas as pd
from fbprophet import Prophet
from fbprophet.plot import plot_cross_validation_metric
import matplotlib.pyplot as plt

# 示例数据(请替换成实际的数据)
data = {
    'Date': pd.date_range(start='2023-01-01', periods=365),
    'Snow_Depth': [10, 12, 8, 15, 20, 18, 25, 22, 30, 28, 35, 32, 40, 38, 45, 42, 50, 48, 55, 52, 60, 58, 65, 62, 70, 68, 75, 72, 80, 78, 85, 82, 90, 88, 95, 92, 100, 98, 105, 102, 110, 108, 115, 112, 120, 118, 125, 122, 130, 128, 135, 132, 140, 138, 145, 142, 150, 148, 155, 152, 160, 158, 165, 162, 170, 168, 175, 172, 180, 178, 185, 182, 190, 188, 195, 192, 200, 198, 205, 202, 210, 208, 215, 212, 220, 218, 225, 222, 230, 228, 235, 232, 240, 238, 245, 242, 250, 248, 255, 252, 260, 258, 265, 262, 270, 268, 275, 272, 280, 278, 285, 282, 290, 288, 295, 292, 300, 298, 305, 302, 310, 308, 315, 312, 320, 318, 325, 322, 330, 328, 335, 332, 340, 338, 345, 342, 350, 348, 355, 352, 360, 358, 365],
}

# 创建DataFrame
df = pd.DataFrame(data)

# 创建Prophet模型
model = Prophet()

# 添加季节性效应(假设以周为周期)
model.add_seasonality(name='weekly', period=7, fourier_order=3)

# 训练模型
model.fit(df.rename(columns={'Date': 'ds', 'Snow_Depth': 'y'}))

# 预测未来时刻
future = model.make_future_dataframe(periods=30)  # 未来30天的预测
forecast = model.predict(future)

# 交叉验证(可选,用于评估模型性能)
from fbprophet.diagnostics import cross_validation
df_cv = cross_validation(model, initial='180 days', period='30 days', horizon='30 days')

# 训练模型见完整版

认证杯跟紧小秘籍冲冲冲!!更多内容可以点击下方名片详细了解!
记得关注 数学建模小秘籍打开你的数学建模夺奖之旅!

  • 20
    点赞
  • 58
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学建模小secret

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值