铛铛!小秘籍来咯!
小秘籍团队独辟蹊径,以图匹配,多目标规划等强大工具,构建了这一题的详细解答哦! 为大家量身打造创新解决方案。小秘籍团队,始终引领着建模问题求解的风潮。
抓紧小秘籍,我们出发吧~
完整内容可以在文章末尾领取!
第一个问题是关于比赛出场顺序的问题。
假设A队的出场顺序为A1, A2, A3, A4, A5,B队的出场顺序为B1, B2, B3, B4, B5。
设A队的胜率为p,B队的胜率为q。
根据已知的历史数据,可以得出以下方程组:
p = ( 23 / 44 ) ∗ ( 21 / 39 ) ∗ ( 21 / 40 ) ∗ ( 20 / 42 ) ∗ ( 18 / 39 ) = 0.0603 p = (23/44) * (21/39) * (21/40) * (20/42) * (18/39) = 0.0603 p=(23/44)∗(21/39)∗(21/40)∗(20/42)∗(18/39)=0.0603
q = ( 21 / 44 ) ∗ ( 18 / 39 ) ∗ ( 21 / 40 ) ∗ ( 20 / 42 ) ∗ ( 21 / 39 ) = 0.0592 q = (21/44) * (18/39) * (21/40) * (20/42) * (21/39) = 0.0592 q=(21/44)∗(18/39)∗(21/40)∗(20/42)∗(21/39)=0.0592
其中,23/44表示A1和B1对抗时A1获胜的概率,21/39表示A2和B2对抗时A2获胜的概率,以此类推。
因此,A队的胜率为p = 0.0603,B队的胜率为q = 0.0592。
为了使A队的胜率最大化,需要使p最大化。根据概率论知识,当A队的出场顺序为A1, A2, A3, A4, A5时,p最大。
因此,A队的最优出场顺序为A1, A2, A3, A4, A5。
问题 1. 在已知部分对抗的历史数据的情况下,我方的最优出场顺序是什么?
解:根据表A-1中的历史数据,我们可以得出以下结论:
-
A1和B1的对抗结果为23:21,21:18,21:19,A1的胜率较高,因此在前期阶段,A1应该作为首发选手。
-
A2和B2的对抗结果为21:15,21:12,A2的胜率较高,因此在前期阶段,A2应该作为第二发选手。
-
A3和B3的对抗结果为21:12,21:16,A3的胜率较高,因此在前期阶段,A3应该作为第三发选手。
-
A4和B4的对抗结果为21:14,A4的胜率较高,因此在前期阶段,A4应该作为第四发选手。
-
A5和B5的对抗结果为21:11,14:21,A5的胜率较高,因此在前期阶段,A5应该作为第五发选手。
综上所述,根据已知的历史数据,我方的最优出场顺序为A1,A2,A3,A4,A5。这样的出场顺序可以最大程度地利用我方选手的优势,提高胜率。
根据题目中给出的历史数据,我们可以得出以下结论:
- 在第一场对抗中,A1 和 B1 对决,A1 获胜;
- 在第二场对抗中,A2 和 B2 对决,A2 获胜;
- 在第三场对抗中,A3 和 B3 对决,A3 获胜;
- 在第四场对抗中,A4 和 B4 对决,A4 获胜;
- 在第五场对抗中,A5 和 B5 对决,A5 获胜。
根据比赛规则,每场比赛结束后,双方都会换人,后得整十分的一方不再换人。因此,在已知对抗历史数据的情况下,我们可以得出最优出场顺序为:A1,A2,A3,A4,A5。
数学公式表示为:
最优出场顺序为:A1,A2,A3,A4,A5。
# 导入pandas库用于数据处理
import pandas as pd
# 创建表A-1的数据框
df1 = pd.DataFrame({
'对抗双方': ['(A1, A2) - (B1, B2)', '(A2, A3) - (B2, B3)', '(A1, A3) - (B1, B2)', '(A2, A4) - (B2, B4)', '(A1, A4) - (B2, B4)', '(A2, A5) - (B3, B5)', '(A1, A5) - (B1, B5)', '(A3, A4) - (B4, B5)', '(A4, A5) - (B3, B5)', '(A3, A4) - (B3, B4)', '(A1, A3) - (B3, B5)'], '比分': ['23:21, 21:18, 21:19', '21:15, 21:12', '20:22, 21:19, 22:20', '21:15, 13:21', '18:21, 21:17, 21:19', '21:12, 21:16', '18:21, 21:14, 21:16', '21:14', '21:11, 14:21', '19:21, 22:20', '21:10']})
# 创建表A-2的数据框
df2 = pd.DataFrame({
'对抗双方': ['(A1, A6) - (B1, B3)', '(A2, A6) - (B2, B6)', '(A3, A5) - (B5, B6)', '(A5, A6) - (B4, B5)', '(A1, A5) - (B1, B6)', '(A3, A4) - (B4, B6)'], '比分': ['16:22, 21:19', '23:25, 16:21', '22:20, 21:17, 16:21', '17:21, 22:20', '18:21, 21:14, 21:19', '21:14']})
# 创建空的列表用于存放每个选手的胜率
win_rate = []
# 循环遍历每个选手
for player in ['A1', 'A2', 'A3', 'A4', 'A5']:
# 计算每个选手的胜率
win_rate.append(df1[df1['对抗双方'].str.contains(player)]['比分'].str.split(',').apply(lambda x: int(x[0].split(':')[0]) > int(x[0].split(':')[1])).mean())
# 根据胜率从高到低排序选手
sorted_players = [x for _, x in sorted(zip(win_rate, ['A1', 'A2', 'A3', 'A4', 'A5']), reverse=True)]
# 输出最优出场顺序
print('最优出场顺序为:', sorted_players)
# 输出结果为:最优出场顺序为: ['A2', 'A3', 'A1', 'A4', 'A5']
第二个问题是在对方针对我方原计划出场顺序采用胜率最高的三种出场顺序之一时,我方应该如何调整出场顺序。
假设我方原计划的出场顺序为A1,A2,A3,A4,A5,对方针对此顺序采用了胜率最高的三种出场顺序之一,即可能的对方出场顺序为(B1,B2,B3,B4,B5),(B1,B2,B4,B3,B5)或者(B1,B2,B5,B3,B4)。为了使我方获胜的概率最大化,需要找到最优的出场顺序。
假设我方的出场顺序为(A1,A2,A3,A4,A5),对方的出场顺序为(B1,B2,B3,B4,B5),则我方获胜的概率为P(A1,A2,A3,A4,A5)。同理,假设我方的出场顺序为(A1,A2,A3,A4,A5),对方的出场顺序为(B1,B2,B4,B3,B5),则我方获胜的概率为P(A1,A2,A3,A4,A5)。假设我方的出场顺序为(A1,A2,A3,A4,A5),对方的出场顺序为(B1,B2,B5,B3,B4),则我方获胜的概率为P(A1,A2,A3,A4,A5)。
因此,我方获胜的概率最大化的问题可以表示为:
m a x P ( A 1 , A 2 , A 3 , A 4 , A 5 ) = m a x P ( A 1 , A 2 , A 3 , A 4 , A 5 ) , P ( A 1 , A 2 , A 3 , A 4 , A 5 ) , P ( A 1 , A 2 , A 3 , A 4 , A 5 ) max P(A1,A2,A3,A4,A5) = max{P(A1,A2,A3,A4,A5),P(A1,A2,A3,A4,A5),P(A1,A2,A3,A4,A5)} maxP(A1,A2,A3,A4,A5)=maxP(A1,A2,A3,A4,A5),P(A1,A2,A3,A4,A5),P(A1,A2,A3,A4,A5)
其中,P(A1,A2,A3,A4,A5)表示我方出场顺序为(A1,A2,A3,A4,A5),对方出场顺序为(B1,B2,B3,B4,B5)时我方获胜的概率。
根据题目中给出的历史数据,可以计算出每种出场顺序下我方获胜的概率,从而可以得到最优的出场顺序。具体的计算方法如下:
- 计算出每种出场顺序下我方获胜的概率:
P ( A 1 , A 2 , A 3 , A 4 , A 5 ) = ( 23 / 44 ) ∗ ( 21 / 39 ) ∗ ( 21 / 38 ) = 0.097 P(A1,A2,A3,A4,A5) = (23/44)*(21/39)*(21/38) = 0.097 P(A1,A2,A3,A4,A5)=(23/44)∗(21/39)∗(21/38)=0.097
P ( A 1 , A 2 , A 3 , A 4 , A 5 ) = ( 23 / 44 ) ∗ ( 21 / 39 ) ∗ ( 21 / 38 ) = 0.097 P(A1,A2,A3,A4,A5) = (23/44)*(21/39)*(21/38) = 0.097 P(A1,A2,A3,A4,A5)=(23/44)