Linear Regression with Multiple Variables
Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:
midterm exam | (midterm exam)^2 | final exam |
89 | 7921 | 96 |
72 | 5184 | 74 |
94 | 8836 | 87 |
69 | 4761 | 78 |
You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form hθ(x)=θ0+θ1x1+θ2x2, where x1 is the midterm score and x2 is (midterm score)^2. Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.
What is the normalized feature x1(3)? (Hint: midterm = 94, final = 87 is training example 3.) Please round off your answer to two decimal places and enter in the text box below.
normalize x1(3) = (94 - (89+72+94+69)/4) / (94-69) = 0.52