Review03 [coursera] Machine learning - Stanford University - Andrew Ng

本文探讨了如何使用多项式回归来预测学生的期末考试成绩,基于他们的期中考试分数。具体地,通过构建一个包含期中成绩及其平方的特征模型,并采用特征缩放和均值归一化的方法进行数据预处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Linear Regression with Multiple Variables

Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

midterm exam(midterm exam)^2final exam
89792196
72518474
94883687
69476178

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form hθ​(x)=θ0​+θ1​x1​+θ2​x2​​, where x1​ is the midterm score and x2​ is (midterm score)^2. Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature x1(3)? (Hint: midterm = 94, final = 87 is training example 3.) Please round off your answer to two decimal places and enter in the text box below.

normalize x1(3) = (94 - (89+72+94+69)/4) / (94-69) = 0.52

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值