JAVA操作Kafka

一、环境说明

1.电脑或你的服务器需要安装zookeeper和kafka

可以参考我的这篇博客:请点击这里!

2.项目中需要下面的依赖:

        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>2.7.0</version>
        </dependency>

二、生产者

1.简单生产者的书写:

package com.maoyan.kafka.producer;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;

public class MyProducer {//普通生产者
    public static void main(String[] args) {
        //1.创建Kafka生产者的配置信息
        Properties properties = new Properties();
        //指定链接的kafka集群
        properties.put("bootstrap.servers","localhost:9092");
        //ack应答级别
//        properties.put("acks","all");//all等价于-1   0    1
        //重试次数
        properties.put("retries",1);
        //批次大小
        properties.put("batch.size",16384);//16k
        //等待时间
        properties.put("linger.ms",1);
        //RecordAccumulator缓冲区大小
        properties.put("buffer.memory",33554432);//32m
        //Key,Value的序列化类
        properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

        //创建生产者对象
        KafkaProducer<String, String> producer = new KafkaProducer<>(properties);

        //发送数据
        for (int i=0;i<10;i++){
            producer.send(new ProducerRecord<String,String>("study","luzelong"+i));
        }

        //关闭资源
        producer.close();

    }
}

在这里插入图片描述

2.有回调函数的生产者

package com.maoyan.kafka.producer;

import org.apache.kafka.clients.producer.*;
import java.util.Properties;

public class CallBackProducer {//带回调函数的生产者
    public static void main(String[] args) {
        //创建配置信息
        Properties properties = new Properties();
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"localhost:9092");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");

        //创建生产者对象
        KafkaProducer<String,String> producer = new KafkaProducer<>(properties);

        //发送数据
        for (int i=0;i<10;i++) {
            //回调函数,该方法会在 Producer 收到 ack 时调用,为异步调用
            producer.send(new ProducerRecord<String, String>("study" ,Integer.toString(i), Integer.toString(i)), (metadata, exception) -> { //如果key为确定值,那么分区也就确定了,所以我这里没有写死(Integer.toString(i))
                if (exception == null) {
                    System.out.println("success->" +
                           "   partition = " +metadata.partition()+"  ~~~~~~~  offset = "+metadata.offset());
                } else {
                    exception.printStackTrace();
                } });  //在send方法后接着调用get()方法 就是有序的同步发送消息
        }


        producer.close();
    }
}

在这里插入图片描述

注意:如果在send()方法后接着调用get()方法,那么就是有序的同步方法,消息会一条接一条的发送send(xxx).get()

3、自定义分区策略的插入

先说一下不自定义的情况的情况:
分区的分配基本由ProducerRecord的参数决定:
请添加图片描述

(1)指明partition的情况下,直接将指明的值直接作为 partiton 值;
(2)没有指明partition值但有key的情况下,将key的hash值与topic的partition数进行取余得到 partition 值;
(3)既没有partition值又没有key值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与topic可用的partition总数取余得到partition值,也就是常说的round-robin算法。

但有时候上面的逻辑并不符合我们的实际开发,而该kafka客户端API也提供了自定义分区的方法,首先需要先书写分区的策略:

package com.maoyan.kafka.partititioner;

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;

import java.util.Map;

public class MyPartitioner implements Partitioner {
    @Override
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
//        Integer num = cluster.partitionCountForTopic(topic);
//        return key.toString().hashCode() % num;
        return 1;
    }

    @Override
    public void close() {

    }

    @Override
    public void configure(Map<String, ?> configs) {

    }
}

然后在生产者的properties中加入即可,其他的书写和上面其他的两个案例类似!

public class PartitionProducer {
   public static void main(String[] args) {
       .....
       properties.put("partitioner.class","com.maoyan.kafka.partititioner.MyPartitioner");
       KafkaProducer<String, String> producer = new KafkaProducer<>(properties);
       ......
   }
}

在这里插入图片描述

三、消费者

Consumer 消费数据时的可靠性是很容易保证的,因为数据在 Kafka 中是持久化的,故不用担心数据丢失问题。由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,需要从故障前的位置的继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,以便故障恢复后继续消费。
所以 offset 的维护是 Consumer 消费数据是必须考虑的问题。

1.自动提交offset的消费者

package com.maoyan.kafka.consumer;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.producer.KafkaProducer;

import java.util.Collections;
import java.util.Properties;

public class AutoCommitConsumer {
    public static void main(String[] args) {//自动提交
        //1.创建消费者配置信息
        Properties properties = new Properties();
        //链接的集群
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"localhost:9092");
        //开启自动提交
        properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,true);
        //自动提交的延迟
        properties.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG,"1000");
        //key,value的反序列化
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
        //消费者组
        properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test-consumer-group1");
        properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"earliest");//重置消费者offset的方法(达到重复消费的目的),设置该属性也只在两种情况下生效:1.上面设置的消费组还未消费(可以更改组名来消费)2.该offset已经过期


        //创建生产者
        KafkaConsumer<String,String> consumer = new KafkaConsumer<>(properties);
        consumer.subscribe(Collections.singletonList("study")); //Arrays.asList()

        while (true) {
            //获取数据
            ConsumerRecords<String, String> consumerRecords = consumer.poll(100);

            //解析并打印consumerRecords
            for (ConsumerRecord consumerRecord : consumerRecords) {
                System.out.println(consumerRecord.key() + "----" + consumerRecord.value());
            }
        }

        //consumer无需close()
    }
}

2.手动提交offset的消费者

package com.maoyan.kafka.consumer;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.util.Collections;
import java.util.Properties;

public class NoAutoCommitConsumer {//手动提交
    public static void main(String[] args) {
        //1.创建消费者配置信息
        Properties properties = new Properties();
        //链接的集群
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"localhost:9092");
        //关闭自动提交!!!!!!!!!!!!!!!!!!!!
        properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,false);
        //key,value的反序列化
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
        //消费者组
        properties.put(ConsumerConfig.GROUP_ID_CONFIG,"group1");
        properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"earliest");//重置消费者offset的方法(达到重复消费的目的),设置该属性也只在两种情况下生效:1.上面设置的消费组还未消费(可以更改组名来消费)2.该offset已经过期


        //创建生产者
        KafkaConsumer<String,String> consumer = new KafkaConsumer<>(properties);
        consumer.subscribe(Collections.singletonList("study")); //Arrays.asList()

        while (true) {
            //获取数据
            ConsumerRecords<String, String> consumerRecords = consumer.poll(100);

            //解析并打印consumerRecords
            for (ConsumerRecord consumerRecord : consumerRecords) {
                System.out.println(consumerRecord.key() + "----" + consumerRecord.value());
            }
            //1.同步提交,当前线程会阻塞直到offset提交成功
            consumer.commitSync();
            //2.异步提交
            //consumer.commitAsync();
        }


    }
}

手动提交 offset 的方法有两种:分别是 commitSync(同步提交)和 commitAsync(异步提交)。两者的相同点是,都会将本次 poll 的一批数据最高的偏移量提交;不同点是,commitSync 阻塞当前线程,一直到提交成功,并且会自动失败重试(由不可控因素导致,也会出现提交失败);而 commitAsync 则没有失败重试机制,故有可能提交失败。

3.自定义提交策略(可以提交到mysql或者redis)

package com.maoyan.kafka.consumer;

import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;

import java.util.*;

public class MyConsumer {
    private static Map<TopicPartition, Long> currentOffset = new HashMap<>();

    public static void main(String[] args) {
        //创建配置信息
        Properties props = new Properties();
        //Kafka 集群
        props.put("bootstrap.servers", "hadoop102:9092");
        //消费者组,只要 group.id 相同,就属于同一个消费者组
        props.put("group.id", "test");
        //关闭自动提交 offset
        props.put("enable.auto.commit", "false");
        //Key 和 Value 的反序列化类
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        //创建一个消费者
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
        //消费者订阅主题
        consumer.subscribe(Arrays.asList("first"), new ConsumerRebalanceListener() {
                    //该方法会在 Rebalance 之前调用
                    @Override
                    public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
                        commitOffset(currentOffset);
                    }

                    //该方法会在 Rebalance 之后调用
                    @Override
                    public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
                        currentOffset.clear();
                        for (TopicPartition partition : partitions) {
                            consumer.seek(partition, getOffset(partition));//定位到最近提交的 offset 位置继续消费
                        }
                    }
                });

        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(100);//消费者拉取数据
            for (ConsumerRecord<String, String> record : records) {
                System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
                currentOffset.put(new TopicPartition(record.topic(), record.partition()), record.offset());
            }
            commitOffset(currentOffset);//异步提交
        }
    }

    //获取某分区的最新 offset
    private static long getOffset(TopicPartition partition) {
        return 0;
    }

    //提交该消费者所有分区的 offset
    private static void commitOffset(Map<TopicPartition, Long> currentOffset) {
        
    }
}

getOffset()和commitOffset()的逻辑需要自己写...

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

键盘歌唱家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值