数据结构之二叉树:二叉查找树基本功能,Python代码实现——10

数据结构之二叉查找树的代码实现

定义
  • 二叉查找树(Binary Search Tree,BST),是一种内存中特殊的树类型的存储结构,它允许对存储在其结点的数据进行增删改查,或者用作动态的数据集合,或是通过key查找对应value的查找表;
创建结点
  • 设计:可以使用顺序表或链表实现二叉树,这里使用链表实现,在学习堆时再使用顺序表实现

使用链表结点设计:

class Node:
    def __init__(self, key=None, value=None):
        self.key = key
        self.value = value
        self.left = None
        self.right = None

left和right分别代表左右子结点,key是可比较的,用于进行顺序匹配;value储存值

实现的功能
  • 构造方法__init__(),root为根结点,默认为None,len为树的大小
  1. size()获取BST中元素个数
  2. put(_key, _value)向树中添加键值对元素,元素按key排序,返回添加元素后的新树
  3. get(_key)通过键获取树中对应元素的值
  4. delete(_key)通过键删除树中对应的元素
  5. min_key()获取最小的key
  6. max_key()获取最大的key
Python代码实现
import operator


class Node:
    def __init__(self, key=None, value=None):
        self.key = key
        self.value = value
        self.left = None
        self.right = None


class BinarySearchTree:
    def __init__(self):
        self.root = None
        self.len = 0

    def size(self):
        return self.len

    def put(self, _key, _value):
        """Put an element into this tree and generate a new BST"""
        def put_into(node, _key, _value):
            """Adjust position of new inserted node
            by BST character:left > root > right"""
            if not node:
                self.len += 1
                return Node(_key, _value)
            if operator.lt(_key, node.key):
                node.left = put_into(node.left, _key, _value)
            elif operator.gt(_key, node.key):
                node.right = put_into(node.right, _key, _value)
            elif operator.eq(_key, node.key):
                node.value = _value
            return node
        self.root = put_into(self.root, _key, _value)
        return self.root

    def get(self, _key):
        """Get a value responding to the given _key from this tree"""
        def get_value_by_key(node, _key):
            if not node:
                return
            if operator.lt(_key, node.key):
                return get_value_by_key(node.left, _key)
            elif operator.gt(_key, node.key):
                return get_value_by_key(node.right, _key)
            else:
                return node.value
        return get_value_by_key(self.root, _key)

    def delete(self, _key):
        """Delete a node responding to the giving key(_key)"""
        def delete_value_by_key(node, _key):
            if not node:
                return
            if operator.lt(_key, node.key):
                node.left = delete_value_by_key(node.left, _key)
            elif operator.gt(_key, node.key):
                node.right = delete_value_by_key(node.right, _key)
            else:
                self.len -= 1
                to_delete_node = node
                if node == self.root:
                    self.root = None
                    return
                # node = None
                if not to_delete_node.left:
                    return to_delete_node.right
                elif not to_delete_node.right:
                    return to_delete_node.left
                else:
                    min_right_tree = to_delete_node.right
                    pre = min_right_tree
                    while min_right_tree.left:
                        pre = min_right_tree
                        min_right_tree = min_right_tree.left
                    pre.left = None
                    min_right_tree.left = to_delete_node.left
                    min_right_tree.right = to_delete_node.right
                    return min_right_tree
        return delete_value_by_key(self.root, _key)

    def min_key(self):
        """Find the minimum key"""
        def min_node(node):
            while node.left:
                node = node.left
            return node
        return min_node(self.root).key

    def max_key(self):
        """Find the maximum key"""
        def max_node(node):
            while node.right:
                node = node.right
            return node
        return max_node(self.root).key

    def max_depth(self):
        """Calculate the max depth of this tree"""
        def max_depth(node):
            max_left, max_right = 0, 0
            if not node:
                return 0
            if node.left:
                max_left = max_depth(node.left)
            if node.right:
                max_right = max_depth(node.right)
            return max(max_left, max_right) + 1
        return max_depth(self.root)
主要代码解释:

put()插入元素:使用递归,按照从上到下从左到右的顺序,依次和插入的元素比较

  • 1.如果当前树中没有任何一个结点,则直接把新结点当做根结点使用并返回
  • 2.如果当前树不为空, 则从根结点开始与传入的元素的key进行比较:
    2.1如果新结点的key小于当前结点的key ,则继续找当前结点的左子结点;
    2.2如果新结点的key大于当前结点的key ,则继续找当前结点的右子结点;
    2.3如果新结点的key等于当前结点的key ,则树中已经存在这样的结点,替换该结点的value值即可。

delete()删除元素:跟插入元素类似,也是使用递归,寻找的顺序按照从上到下从左到右的顺序,依次和插入的元素比较,如果找到key相等的元素则做删除动作

  • 如果找到key相等的元素,则只需要往这个结点的右子树的左边最深处寻找,根据排序的规律,找到的元素与key相等的元素交换位置即可
代码测试
if __name__ == '__main__':
    BST = BinarySearchTree()

    BST.put('e', '5')
    BST.put('b', '2')
    BST.put('g', '7')
    BST.put('a', '1')
    BST.put('d', '4')
    BST.put('f', '6')
    BST.put('h', '8')
    BST.put('c', '3')
    print(f"The size of this binary tree now is {BST.size()}\n")

    key = 'a'
    print(f"\nGet element by key[{key}]: {BST.get(key)}")

    key = 'b'
    BST.delete(key)
    print(f"After deleting an node ({key}), the size of this tree: {BST.size()}")
    print(f"Get the deleted value (key[{key}]), it should be none: {BST.get(key)}")
    print(f"Get the value (key[{'a'}]), it should be {1}: {BST.get('a')}")
测试结果
The size of this binary tree now is 8

Get element by key[a]: 1
After deleting an node (b), the size of this tree: 7
Get the deleted value (key[b]), it should be none: None
Get the value (key[a]), it should be 1: 1

Process finished with exit code 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值