众所周知多重背包问题的一个重要优化:二进制分解。
然而在二进制分解时,有细节需要注意。
一、分解顺序问题
有时候脑子抽筋,会突然用位运算移位来直接获取分解结果。这种方法是不可取的,例如5=101,按照移位分解的方法就会分解为4+1,而事实上我们要分解成1+2+2
二、分解后的冗余运算
分解之后会留下剩余的部分,对于剩余的部分,必须要一次性清除,万不可一次次处理,这样时间复杂度会很高。
三、边分解边运算
使用边分解边运算的方法不仅可以节约一点点的循环开销,同时也能节省内存。
以下提供一份多重背包问题的参考代码:
#include <iostream>
#include <cstring>
#include <cstdio>
#define max(a,b) a>b?a:b
#define read(x) scanf("%d",&x)
using namespace std;
unsigned int dp[100005];
int w,v,n,c,s=0;
int main()
{
freopen("treasure.in","r",stdin);
freopen("treasure.out","w",stdout);
unsigned int i,j,jj,l,tw,tv,tn,unit;
memset(dp,0,sizeof(dp));
read(n),read(c);
for(i=1;i<=n;i++)
{
read(tw),read(tv),read(tn);
jj=1;
while(tn>=jj)
{
tn-=jj, w=tw*jj, v=tv*jj;
for(j=c;j>=v;j--)
dp[j]=max(dp[j-v]+w,dp[j]);
jj*=2;
}
if(tn>0)
{
w=tw*tn, v=tv*tn;
for(j=c;j>=v;j--)
dp[j]=max(dp[j-v]+w,dp[j]);
}
}
cout<<dp[c]<<endl;
return 0;
}