【Redis原理篇】五大基本数据类型的底层编码方式

上文:redis底层数据结构

String底层结构

一、编码方式

1.int编码
  • **适用范围:**64位整数(long

  • **实现:**直接将数据存储在redisObjectptr指针位置。

  • 内存布局:

    在这里插入图片描述

2.embstr编码
  • **适用条件:**字符串大小<44字节

    • **实现:**将redisObjectSDS分配在连续内存中。
  • 内存布局:

    在这里插入图片描述

    • redisObject (16B)
      SDS头 (3B) 
      字符串数据 (44B)  
      结尾'\0' (1B) 
      
    • 总占用:16 + 3 + 44 + 1 = 64字节(刚好利用jemalloc(按2的次方分配内存)的64B内存块,减少碎片)。

  • 特点

    • 内存连续,访问高效(减少CPU缓存缺失)。
    • 只读设计,修改时自动转为raw编码。
3.raw编码
  • 适用条件:字符串长度 > 44字节或含二进制数据。
  • 实现redisObjectSDS分两次分配内存,ptr指向独立的SDS结构。
  • 内存布局:在这里插入图片描述

二、编码转换场景

1.int → raw

执行非整数操作(如APPEND非数字字符)。

2.embstr → raw

修改embstr字符串(因embstr内存不可变)。

List底层结构

一、List的底层演进

Redis版本底层结构特点
❤️.0ziplist 或 linkedlist小数据用ziplist(内存紧凑),大数据用linkedlist(操作高效)
3.0~3.2quicklist(过渡阶段)初步引入分段ziplist设计
≥3.2quicklist(默认统一实现)每个节点为ziplist,通过双向链表连接,平衡内存与性能

Set底层结构

一、编码方式

1.intset
  • 适用条件:
    • 所有元素均为 整数(int64_t 范围)。
    • 元素数量 ≤ set-max-intset-entries(默认 512)。
  • 特点
    • 内存紧凑:无指针开销,连续存储整数。
    • 自动升级:插入超出当前编码范围的整数时,升级为更大编码。
    • 二分查找:元素有序,查找时间复杂度 O(log n)
  • 缺点:
    1. 不支持非整数类型元素
      intset 设计初衷是存储整数,只能保存整数。如果尝试往intset里添加非整数类型的数据(如字符串、浮点数等),Redis 会将 intset 升级为 hashtable 来存储。
    2. 升级操作开销大
      当插入的新元素类型比 intset 现有元素类型长时,需要进行升级操作。整个升级过程涉及大量内存操作和数据类型转换,时间复杂度为 O ( N ) O(N) O(N),在大数据量场景下,会带来较大性能开销。
    3. 查找效率在数据量增大时降低
      intset 内部使用有序数组存储元素,查找元素时采用二分查找算法,平均时间复杂度为 O ( l o g N ) O(log N) O(logN)。虽然二分查找效率较高,但随着元素数量 N 不断增加,查找时间也会相应变长。相比哈希表(平均查找时间复杂度为 O ( 1 ) O(1) O(1)),在大数据量场景下,intset 的查找效率会处于劣势。
    4. 插入和删除操作效率问题
      插入和删除元素时,为了保持数组的有序性,需要移动大量元素。插入或删除操作的平均时间复杂度为 O ( N ) O(N) O(N),,在大数据量场景下,频繁的插入和删除操作会严重影响性能
2.dict(hashtable)
  • 适用条件

    • 元素包含 非整数
    • 元素数量 > set-max-intset-entries
  • 结构设计在这里插入图片描述

  • 特点

    • O(1) 时间复杂度:插入、删除、查找均高效且无intset升级操作。
    • 内存开销大:每个元素需存储 Entry 结构(键指针 + next 指针)。

二、编码转换机制

1. intset → hashtable
  • 触发条件
    • 插入 非整数元素
    • 元素数量超过 set-max-intset-entries

三、内存与性能对比

维度intsethashtable
内存占用低(无指针,连续存储)高(Entry 结构 + 指针)
插入性能O(n)(需维护有序性)O(1)(平均)
查找性能O(log n)(二分查找)O(1)(哈希查找)
适用场景小规模纯整数集合大规模或含非整数元素的集合

ZSet底层结构

一、编码方式

1. ziplist(压缩列表)
  • 适用条件

    • 元素数量 ≤ zset-max-ziplist-entries(默认 128)。
    • 所有元素值(member)长度 ≤ zset-max-ziplist-value(默认 64 字节)。
  • 存储方式

    • 元素(member)和分数(score)成对存储,按分数升序排列。

    • 结构示例:

      在这里插入图片描述

      特点

    • 内存紧凑:连续内存块存储,无指针开销。

    • 插入/删除低效:需重分配内存并移动数据,时间复杂度 O(n),大数据量场景下性能低。

2. skiplist(跳跃表) + dict(哈希表)
  • 适用条件
    • 元素数量或值大小超过上述阈值。
  • 结构设计
    • 跳跃表(zskiplist)
      • 按分数排序,支持 O(log n) 的插入、删除和范围查询。
      • 节点结构包含成员(member)、分数(score)、多层前向指针。
    • 哈希表(dict)
      • 键为成员(member),值为分数(score),支持 O(1) 的成员查找。
  • 协作机制
    • 插入:同时向跳跃表和哈希表插入数据,保证一致性。
    • 查询:哈希表快速定位分数(zscore),跳跃表处理范围操作(zrange zrevrange zrangebyscore)。
  • 特点
    • 查询效率高
    • 内存开销大

二、编码转换机制

  • ziplist → skiplist
    • 触发条件:插入元素导致数量或值大小超限。
    • 过程:遍历 ziplist,将所有元素插入跳跃表和哈希表。

Hash底层结构

Hash底层采用的编码与Zset基本一致,只需要把排序有关的SkipList去掉即可。

一、编码方式

1.ziplist
  • 适用条件
    • 字段数量 ≤ hash-max-listpack-entries(默认 512)。
    • 每个字段的值长度 ≤ hash-max-listpack-value(默认 64 字节)。
  • 结构特点
    • 内存紧凑:连续存储字段-值对,无指针开销。
    • 顺序存储:字段和值按添加顺序排列,适合小数据量。
    • 快速遍历:支持线性遍历,但随机访问需顺序查找。
  • 操作限制
    • 插入/删除低效:需内存重分配和数据移动,时间复杂度 O(n)。
    • 自动转换:超出阈值时转为hashtable。
2.hashtable(字典dict)
  • 适用条件
    • 字段数量或值大小超过listpack/ziplist阈值。
  • 结构设计
    • 哈希表:使用链地址法解决冲突,每个哈希节点存储字段和值的指针。
    • 快速操作
      • 查找/插入/删除:平均 O(1) 时间复杂度。
      • 支持大规模数据:动态扩容缩容,适应数据增长。
  • 内存开销
    • 每个字段需额外存储指针和哈希表元数据,内存占用较高。

二、编码转换机制

  • listpack/ziplist → hashtable
    • 触发条件:字段数超限或单个值超长。

三、内存结构

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赛博猿神

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值