二叉树中感觉用到递归真的是很多很多,基本很多的算法题都是用到了递归方法来求解。
有几个套路是必须要掌握,不然力扣简单题都够呛。
首先我觉得递归需要注意问题有以下几个:
- 方法的返回值。返回值被用到的地方可能有俩个,第一个是这个递归顶层的返回值就是最后需要的值,第二个是上层递归需要用到下层递归的值。
- 方法体。也就是本层递归我们需要关注的操作,忽略掉其他因素,我们只对当前层的内容进行操作。
- 方法参数,方法体中需要进行操作,比如交换,合并,这些都是基于本层递归中提供的参数前提下的,所以参数的选择也很重要,一般如果是俩个树进行操作,都会给俩个参数。
- 递归的出口,一般都会是在方法体前,通过判断当前节点是不是null来进行方法的出口
- 还有一个我觉得很容易忽略的点,就是往下递归和方法体之间的顺序,如果是深度遍历,那么应该是先进行深度往下递归,然后才是具体的本层业务。
如果是广度优先遍历,那么就是先方法体的执行,然后再往下进行遍历。
对于第五点。给这样一题体会不同:
已知两颗二叉树,将它们合并成一颗二叉树。合并规则是:都存在的结点,就将结点值加起来,否则空的位置就由另一个树的结点来代替。
俩段不同代码
public TreeNode mergeTrees (TreeNode t1, TreeNode t2) {
if(t1 == null){
return t2;
}
t1.val += t2.val;
method(t1, t2);
return t1;
}
public void method(TreeNode t1, TreeNode t2){
if(t1 == null || t2 == null){
return;
}
if(t1.left != null && t2.left != null){
t1.left.val += t2.left.val;
}
if(t1.right != null && t2.right != null){
t1.right.val += t2.right.val;
}
if(t1.left == null){
t1.left = t2.left;
}
if(t1.right == null){
t1.right = t2.right;
}
method(t1.left, t2.left);
method(t1.right, t2.right);
return;
}
public TreeNode mergeTrees (TreeNode t1, TreeNode t2) {
if(t1 == null){
return t2;
}
t1.val += t2.val;
method(t1, t2);
return t1;
}
public void method(TreeNode t1, TreeNode t2){
if(t1 == null || t2 == null){
return;
}
method(t1.left, t2.left);
method(t1.right, t2.right);
if(t1.left != null && t2.left != null){
t1.left.val += t2.left.val;
}
if(t1.right != null && t2.right != null){
t1.right.val += t2.right.val;
}
if(t1.left == null){
t1.left = t2.left;
}
if(t1.right == null){
t1.right = t2.right;
}
return;
}
上面那个代码就是通过不了,下面的那段就a过了。这就是第五点所说的差别,那么对于本题,这俩段代码执行上的区别体现在哪?
这样的情况,如果t1.left = null,t2.left != null;
根据程序t1.lefty = t2.left然后继续往下变脸,那么这个下面的子树就会变成自己加自己的值,结点的值变成正确结果的俩倍。而如果是第二段代码,先遍历到跟结点然后再回溯执行方法体,显然不会存在这样的问题。