笔记说明:本文是我的学习笔记,大部分内容整理自 黄红梅,张良均等.Python数据分析与应用[M].北京:人民邮电出版社,2018:52-77. 还有部分片断知识来自网络搜索补充。
可视化这块的内容我以后会专门学习一本参考书然后整理笔记的,现在仅仅是整理上述参考书的一个章节的基础知识。
注:写在最前面。这块知识是可视化这一大块的内容,很多、很细致,我在整理这个笔记的时候就会不自觉一直在网上搜索更多的知识,对我现阶段而言太浪费时间了,因为我的主要方向不是做可视化的,所以我在后面的笔记里面仅仅呈现出开头提到的那个参考工具书的第三章可视化基础的笔记整理。
关于可视化更详细的部分在以后我系统学习完我的知识之后回过头我会整理一本专门讲python可视化的工具书的笔记的。书已经买好了,就是!!暂时不会看那本书!!
推荐博客:这个人的博客https://blog.csdn.net/sinat_36219858/article/details/79800460
文章目录
0.本文的数据
CSDN的数据不可以免费共享,至少要一个金币,有能力的就去下载一下数据下载链接CSDN数据。不方便的底下头评论留言,留下邮箱号,我看到之后就会把数据发给你,或者你可以在这本书的出版社网站人民邮电出版社教育社区或者“泰迪杯数据挖掘比赛”泰迪杯数瑞思的网站上找这本书的附带资源,都是免费下载的。
1.绘图基础语法与常用参数
1.1 pyplot
pyplot绘图的方式类似R语言里面的ggplot,是建立多个图层来完成同一幅图中绘制多个图形。
因此需要在每建立一个图层之后就添加标题、x轴、x轴的刻度范维、y轴、y轴的刻度范围,然后添加图形,添加图例,保存显示。
1.1.1创建画布和子图
- 在一幅图时可以省略
- plt.figure:空白画布
- figure.add_subplot(‘行’,‘列’,‘选中的子图编号’)
1.1.2 添加画布内容
- 具体参数详见help(func)
- plt.title:标题
- plt.xlabel:x轴名称
- plt.ylabel:y轴
- plt.xlim:x轴的范围
- plt.ylim:y轴范围
- plt.xticks:第一个参数为范围,数组类型;第二个参数是标签,第三个是控制标签,
遵循text协议,具体参照matplotlib.text - plt.yticks:同上
- plt.legend:图例
1.1.3 保存与显示图形
- plt.savafig:保存
- plt.show:在本机显示
上个栗子!
## 一个图
help(plt.plot)
import numpy as np
import matplotlib.pyplot as plt
data = np.arange(11)
plt.title(u'随便画一条看看')
plt.xlim((0,11))
plt.xlabel(u'X轴名字')
plt.ylim((0,105))
plt.ylabel(u'y轴名字')
plt.xticks(ticks=range(0,12))
plt.yticks(range(0,105,10))
plt.plot(data,data**2)
plt.legend('y=x^2')
plt.savefig('D:\\codes\\python\\image\\plot1.png')
plt.show()
## 两个图
# -*- coding: utf-8 -*-
rad=np.arange(0,np.pi*2,0.01)
p1=plt.figure(figsize=(15,7),dpi=111)
pic1=p1.add_subplot(1,</