2.sklearn—评价指标大全(平均误差、均方误差、混淆矩阵、准确率、查全率、查准率、召回率、特异度,F1-score、G-mean、KS值、ROC曲线、AUC值、损失函数、结构风险最小)

1. 回归问题中的各种误差

1.1 绝对误差和相对误差

  • 绝对误差:
    E = Y − Y ^ E=Y-\hat{Y} E=YY^
  • 相对误差:
    e = Y − Y ^ Y e=\frac{Y-\hat{Y}}{Y} e=YYY^

1.2 平均绝对误差

英文:MeanAbsoluteError,MAE

M A E = 1 n ∑ i = 1 n ∣ Y i − Y ^ i ∣ MAE=\frac{1}{n}\sum_{i=1}^n|{Y_i-\hat{Y}_i}| MAE=n1i=1nYiY^i

1.3 均方误差!!!zei重要!!!!

英文:Mean Square Error,MSE
m s e = 1 n ∑ i = 1 n ( Y i − Y ^ i ) 2 mse=\frac{1}{n}\sum_{i=1}^n({Y_i-\hat{Y}_i})^2 mse=n1i=1n(YiY^i)2

1.4 均方根误差

英文:Root Mean Square Error,RMSE
R M S E = 1 n ∑ i = 1 n ( Y i − Y ^ i ) 2 RMSE=\sqrt{\frac{1}{n}\sum_{i=1}^n({Y_i-\hat{Y}_i})^2} RMSE=n1i=1n(YiY^i)2

1.5 平均绝对百分误差

英文:Mean Absolute Percentage Error,MAPE
M A P E = 1 n ∑ i = 1 n ∣ Y i − Y i ^ Y i ∣ MAPE=\frac1n\sum_{i=1}^n|\frac{Y_i-\hat{Y_i}}{Y_i}| MAP<

### G-Mean 的理论含义及应用场景 #### 理论含义 G-Mean 是一种用于评估分类模型性能的指标,尤其适用于类别分布不均衡的数据集。它定义为各个类别准确率(Recall 或 Sensitivity)的几何平均[^4]。具体来说,如果存在多个类别,则 G-Mean 计算公式如下: 对于二分类问题: \[ G-Mean = \sqrt{Sensitivity \times Specificity} \] 其中, - **Sensitivity** 表示正类的召回率 \( TP / (TP + FN) \),即正确识别出的正样本占实际正样本的比例; - **Specificity** 表示负类的召回率 \( TN / (TN + FP) \),即正确识别出的负样本占实际负样本的比例。 对于多分类问题: \[ G-Mean = (\prod_{i=1}^{n} Recall_i)^{\frac{1}{n}} \] 这里 \( n \) 表示类别数量,\( Recall_i \) 表示第 i 类别的召回率。 #### 应用场景 G-Mean 被广泛应用于处理不平衡数据集的情况,在这种情况下,传统的正确率(Accuracy)可能无法真实反映模型的性能。例如,当某一类别的样本远少于其他类别时,仅依赖 Accuracy 可能会误导决策者认为模型表现良好,但实际上可能是由于大量预测为多数类别所致。 相比之下,G-Mean 同时考虑了少数类和多数类的表现,从而提供了一个更平衡的评价标准。这使得 G-Mean 成为了许多领域的重要工具,比如金融欺诈检测、医疗诊断以及异常事件监测等。 以下是 Python 中实现 G-Mean 的代码片段: ```python from sklearn.metrics import recall_score, make_scorer import numpy as np def g_mean(y_true, y_pred): recalls = recall_score(y_true, y_pred, average=None) return np.prod(recalls)**(1/len(np.unique(y_true))) # 使用自定义评分函数 gmean_scorer = make_scorer(g_mean, greater_is_better=True) print("G-Mean:", g_mean([0, 1, 1, 0], [0, 0, 1, 0])) ``` 此代码展示了如何基于 `recall_score` 函数计算 G-Mean ,并将其封装为可重用的形式以便集成到机器学习管道中。 ---
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值