模型评估
评价指标Evaluation metrics
分类评价指标
1 准确率
2 平均准确率
3 对数损失Log-loss
4 基于混淆矩阵的评估度量
41 混淆矩阵
42 精确率Precision
43 召回率Recall
44 F1-score
5 AUCArea under the CurveReceiver Operating Characteristic ROC
TPRTrue Positive Rate
FPRFalse Positive Rate
ROC曲线
AUC
回归评价指标
1 RMSE
2 均方差mean squared error
3 平均绝对误差mean_absolute_error
4 中值绝对误差Median absolute error
5 R2 决定系数r2_score
问题
sklearn 评价指标
模型评估
有三种不同的方法来评估一个模型的预测质量:
estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题。
Scoring参数:使用cross-validation的模型评估工具,依赖于内部的scoring策略。见下。
通过测试集上评估预测误差:sklearn Metric函数用来评估预测误差。
评价指标(Evaluation metrics)
评价指标针对不同的机器学习任务有不同的指标,同一任务也有不同侧重点的评价指标。
主要有分类(classification)、回归(regression)、排序(ranking)、聚类(clustering)、热门主题模型(topic modeling)、推荐(recommendation)等。
一、分类评价指标(Evaluation metrics)、
分类有二分类和多分类,二分类主要“是”和“不是”的问题,可以扩展到多分类,如逻辑回归->SoftMax。
1.1 准确率
分类中,使用模型对测试集进行分类,分类正确的样本个数占总样本的比例:
问题:
不同类别样本无区分:各个类平等对待,而实际中会针对不同类有所区分,例如医疗上侧重正例的召回(假阴性:不要漏诊疾病),