sklearn中的评价指标介绍(异常检测过程记录)

模型评估
评价指标Evaluation metrics
分类评价指标

    1 准确率
    2 平均准确率
    3 对数损失Log-loss
    4 基于混淆矩阵的评估度量
        41 混淆矩阵
        42 精确率Precision
        43 召回率Recall
        44 F1-score
    5 AUCArea under the CurveReceiver Operating Characteristic ROC
        TPRTrue Positive Rate
        FPRFalse Positive Rate
        ROC曲线
        AUC

回归评价指标

    1 RMSE
    2 均方差mean squared error
    3 平均绝对误差mean_absolute_error
    4 中值绝对误差Median absolute error
    5 R2 决定系数r2_score

问题
sklearn 评价指标

模型评估

有三种不同的方法来评估一个模型的预测质量:

    estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题。
    Scoring参数:使用cross-validation的模型评估工具,依赖于内部的scoring策略。见下。
    通过测试集上评估预测误差:sklearn Metric函数用来评估预测误差。

评价指标(Evaluation metrics)

评价指标针对不同的机器学习任务有不同的指标,同一任务也有不同侧重点的评价指标。

主要有分类(classification)、回归(regression)、排序(ranking)、聚类(clustering)、热门主题模型(topic modeling)、推荐(recommendation)等。
一、分类评价指标(Evaluation  metrics)、

分类有二分类和多分类,二分类主要“是”和“不是”的问题,可以扩展到多分类,如逻辑回归->SoftMax。

1.1 准确率

分类中,使用模型对测试集进行分类,分类正确的样本个数占总样本的比例:

                                                              

问题:

    不同类别样本无区分:各个类平等对待,而实际中会针对不同类有所区分,例如医疗上侧重正例的召回(假阴性:不要漏诊疾病),

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值