BZOJ4182 shopping 点分治+多重背包单调队列优化

预备知识:会求重心,会多重背包的单调队列优化。

                            Shopping

            Time Limit: 30 Sec  Memory Limit: 128 MB

Description

马上就是小苗的生日了,为了给小苗准备礼物,小葱兴冲冲地来到了商店街。商店街有n个商店,
并且它们之间的道路构成了一颗树的形状。

第i个商店只卖第i种物品,小苗对于这种物品的喜爱度是wi,物品的价格为ci物品的库存是di。
但是商店街有一项奇怪的规定:如果在商店u,v买了东西,且有一个商店w在u到v的路径上,那么
必须要在商店w买东西。小葱身上有m元钱,他想要尽量让小苗开心,所以他希望最大化小苗对买
到物品的喜爱度之和。这种小问题对于小葱来说当然不在话下,但是他的身边没有电脑,于是他
打电话给同为OI选手的你,你能帮帮他吗?

Input
输入第一行一个正整数T,表示测试数据组数。
对于每组数据,
第一行两个正整数n;m;
第二行n个非负整数w1,w2...wn;
第三行n个正整数c1,c2...cn;
第四行n个正整数d1,d2...dn;

Output
输出共T 行,每行一个整数,表示最大的喜爱度之和。
Sample Input
1 
3 2
1 2 3
1 1 1
1 2 1
1 2
1 3
Sample Output
4

HINT
 N<=500,M<=4000,T<=5,Wi<=4000,Di<=100

这道题大概就是在树上做背包,并且选中的物品还要在一个联通块上,每个点的物品还可以取多个(有数量限制)。
怎么做呢?
首先考虑点分治,每次考虑重心必选的方案,不选的话就删除重心,递归处理。对于递归到的当前子树,我们以重心为根,因为重心必选,所以就变成了一个树形依赖背包(对于每个点,必须先选了它的父亲才能选它)。
那么,如果每个节点物品只有一个(也就是0|1背包),我们该怎么做呢?
我们可以以重心为根,深搜整棵子树,按dfs序存入数组base[],并处理好每个店的子树大小sz[],于是就有一个很经典的转移方程:

f[i][j]=max(f[i+1][jv[i]]+w[i],f[i+sz[i]][j])

f[i][j] 表示i以及以后dfs序的点占用j的空间的最大价值。
前面是考虑选这个物品,就可以继续考虑他的儿子(第一个儿子->i + 1),否则直接跳过整棵子树(同一棵子树的dfs序是连续的)。
0|1背包的话,到这里已经结束了,那么多重背包该怎么处理呢?
(一种做法是将多重背包二进制分组,可以将d个物品分成约logd组,总复杂度nmlognlogd)
这里给出一个更优的做法,那就是单调队列优化,复杂度nmlogn
这里是多重背包单调队列优化的代码,可以发现与平常的有些不同(因为要强制至少选一个)

见注释:

    int va[M], vb[M];
    For(j, 0, v - 1){
        int *pb = va, *pe = va - 1;
        int *qb = vb, *qe = vb - 1;
        for(int k = j, i = 0; k <= m; k += v, ++i){
            if(pe == pb + lim){
                if(*qb == *pb) ++qb;
                ++pb;
            }
            int tt = dp[now + 1][k] - i * w;
            if(i) dp[now][k] = *qb + i * w;
            //到了可以选的体积才更新(i > 0)。
            //先更新,再弹队,因为要强制选,所以要防止 k 取到 k(也就是没选)。
            while(qe >= qb && *qe <= tt) --qe;
            *++qe = tt; *++pe = tt;
        }
    }

于是,前面的就可以直接跑多重背包,后面的最后再取max即可。

最后,时刻更新ans即可;
还有,在清空dp数组的时候最好不要用memset,会T,不如for循环将有用状态逐个清空,这样清空的复杂度也是nmlogn的,很稳。

最后贴上未删减版代码:

#include<cstdio>
#include<cstring>

#define N 502
#define M 401
#define E 1005
#define For(a, b, c) for(int a = b; a <= c; ++a)
#define Forr(a, b, c) for(int a = b; a >= c; --a)
using namespace std;
const int inf = 1e9;
int n, m, wei[N], cost[N], cnt[N];

inline int max(int a, int b){ return a > b ? a : b; }

int e, be[N], to[E], ne[E];
inline void Add(int u, int v){
    to[++e] = v, ne[e] = be[u], be[u] = e;
}

int sz[N], f[N], rt, tot;
bool del[N];
inline void dfs1(int x, int fa){    //找重心
    sz[x] = 1, f[x] = 0;
    for(int i = be[x]; i; i = ne[i]){
        int v = to[i];
        if(v == fa || del[v]) continue;
        dfs1(v, x);
        sz[x] += sz[v];
        f[x] = max(f[x], sz[v]);
    }
    f[x] = max(f[x], tot - sz[x]);
    if(f[x] < f[rt]) rt = x;
}
int cod, base[N];
inline void dfs3(int x, int fa){   //处理sz[],base[]
    base[++cod] = x, sz[x] = 1;
    for(int i = be[x]; i; i = ne[i])
        if(to[i] != fa && !del[to[i]]) dfs3(to[i], x), sz[x] += sz[to[i]];
}

int dp[N][M], ans;
inline void Pack(int now, int v, int w, int lim){
//now -> 正在处理的物品   v -> 物品体积   w -> 物品价值   lim -> 物品数量
    if(lim == 1){    //0|1背包
        For(i, v, m) dp[now][i] = dp[now + 1][i - v] + w;
        return ;
    }
    if(lim * v > m - v){    //完全背包
        For(i, v, m) dp[now][i] = max(dp[now + 1][i - v], dp[now][i - v]) + w;
        return ;
    }
    //以上两个是用来优化常数的
    int va[M], vb[M];
    For(j, 0, v - 1){
        int *pb = va, *pe = va - 1;
        int *qb = vb, *qe = vb - 1;
        for(int k = j, i = 0; k <= m; k += v, ++i){
            if(pe == pb + lim){
                if(*qb == *pb) ++qb;
                ++pb;
            }
            int tt = dp[now + 1][k] - i * w;
            if(i) dp[now][k] = *qb + i * w;
            while(qe >= qb && *qe <= tt) --qe;
            *++qe = tt; *++pe = tt;
        }
    }
}
inline void Dp(){
    Forr(i, cod, 1){
        int k = base[i];
        Pack(i, cost[k], wei[k], cnt[k]);
        For(j, 0, m) dp[i][j] = max(dp[i][j], dp[i + sz[k]][j]);
    }
    For(i, 0, m) ans = max(ans, dp[1][i]);   //只在1取答案
    For(i, 1, cod) For(j, 0, m) dp[i][j] = 0;   //清空
}

inline void Solve(int now){    //递归分治
    cod = 0, dfs3(now, 0);
    Dp();
    del[now] = 1;         //将重心删除
    for(int i = be[rt]; i; i = ne[i]){
        int v = to[i];
        if(del[v]) continue;
        tot = sz[v], rt = 0, dfs1(v, now);
        Solve(rt);
    }
}

int main(){
#ifndef ONLINE_JUDGE
    freopen("pro.in", "r", stdin);
    freopen("pro.out","w",stdout);
#endif
    int T;
    scanf("%d", &T);
    while(T--){
        e = 0, ans = 0;
        memset(be, 0, sizeof(be));
        memset(del, 0, sizeof(del));
        scanf("%d%d", &n, &m);
        For(i, 1, n) scanf("%d", &wei[i]);
        For(i, 1, n) scanf("%d", &cost[i]);
        For(i, 1, n) scanf("%d", &cnt[i]);
        For(i, 1, n - 1){
            int u, v;
            scanf("%d%d", &u, &v);
            Add(u, v), Add(v, u);
        }
        rt = 0, f[0] = inf, tot = n;
        dfs1(1, 0);
        Solve(rt);
        printf("%d\n", ans);
    }
    return 0;
}

若有不明白或错误之处还请评论。
转载请注明出处:http://blog.csdn.net/monkey_king2017cn

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策的下标。每次加入一个新的决策 i 时,我们可以将队列尾部的决策 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策就是最优决策。我们可以用类似于双指针的方法来维护队列头部的决策是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策。对于每个,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值