前言:
下了好大决心,花了一个晚上的时间,终于看懂了FFT的理论与流程,然后又花了一个晚上实现代码,做了几道模板题。
FFT理论很深,却又很实用,一个很常用的用法就是加速多项式乘法,使得原来O(n^2)的复杂度减小到O(nlogn)。
下面我来大概讲述一下FFT的基本理论与算法流程,帮助初学者了解FFT,同时也是自己的复习。
<1> 介绍:
FFT,全称快速傅里叶变换(fast Fourier transform),是用来计算离散傅里叶变换(DFT)及其逆变换(IDFT)的快速算法。对于DFT,迷一点讲就是说它把时域信号转化为频域信号(不明白也没关系,并不影响学习算法)。在算法竞赛中,我们经常用FFT来加速卷积,做一些多项式乘法或是高精度乘法之类的。
我主要基于多项式乘法来介绍FFT,下面也都是用多项式乘法来讲的~
<2>一些定义:
我们将一个以x为变量的多项式A(x)表示为:
A(x)=∑j=0n−1ajxj
若多项式 A(x) 的最高次的非零系数为 ak ,则称这是一个k次多项式,而它的次数界为>k的任意一个整数(一般取k+1)。
若有两个以x为变量的n次多项式 A(x) , B(x) ,则它们的积可表示为:
C(x)=∑j=02n−2cjxj
其中
cj=∑k=0jakbj−k
C(x) 是一个次数界为2n-1的多项式。
另外,下面还大量提到了复数,并用专用符号 i 来表示虚数单位,
<3>系数表达与点值表达:
对一个次数界为n的多项式A(x)而言,其系数表达是一个由系数组成的向量a=(a0,a1,...,an−1)。
而它的点值表达是一个由n个点值对组成的集合
(x0,y0),(x1,y1),...,(xn−1,yn−1)
使得对 k=0,1,...,n−1 ,所有的 xk 各不相同,
yk=A(xk)
对于点值表达,我们可以看成是把多项式 A(x) 当做一个以 x 为自变量的函数,并把
我们可以看到,求出这个多项式的n个点值复杂度为 O(n2) ,后面可以看到,如果我们巧妙地选取点 xk ,就可加速这一过程,使复杂度降至 O(nlogn) 。
我们将求值运算的逆称为插值(就是通过点值表达来求出系数表达),有一个 定理(差值多项式的唯一性):对于任意n个点值对组成的集合,其中所有的xk都不同,那么存在唯一的多项式A(x),满足yk=A(xk),k=0,1,...,n−1。证明不再赘述,我们大概可以从两点确定一条直线,三点确定一条抛物线来大概认定这个定理吧。
对于多项式乘法,点值表达是十分方便的。若 C(x)=

这篇博客详细介绍了快速傅里叶变换(FFT)的基本理论和算法流程,包括FFT的作用、定义、单位复数根的概念,以及DFT和FFT的计算方法。通过FFT,可以将多项式乘法的时间复杂度从O(n^2)降低到O(nlogn)。文中还提到了多项式乘法的系数表达与点值表达之间的转化,并讲解了如何利用单位复数根实现快速转化。最后,博主讨论了卷积定理和FFT在多项式乘法中的应用。
最低0.47元/天 解锁文章
643





