斐波那契数,亦称之为斐波那契数列(意大利语: Successione di Fibonacci),又称黄金分割数列、费波那西数列、费波拿契数、费氏数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波那契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=Fn-1+Fn-2(n>=2,n∈N*)。用文字来说,就是斐波那契数列列由 0 和 1 开始,之后的斐波那契数列系数就由之前的两数相加。
思路:第一种是利用递归。
int fib(int n) //求第n个斐波那契数
{
if(n<2) return n;
else return fib(n-1)+fib(n-2);
}
第二种是利用迭代。
int fib(int n)
{
if(n<2) return n;
else {
int i=0;
int f0=0;
int f1=1;
int f2=0;
for(i=2;i<=n;i++)
{
f2=f1+f0;
f0=f1;
f1=f2;
}
return f2;
}
}
两种算法相比,递归的代码量小而且容易看懂,但是存在的弊端是当n较大时,递归所用的时间远远大于迭代运行出来所用的时间,而且它的冗余计算的数量也增长的非常快。比如在计算fib(10)时,fib(3)被计算了21次。当你在计算ib(30)时,fib(3)被计算了317 811次。所以在使用递归时就要考虑到,递归带来的好处是否抵得上它的代价。