隐马尔科夫模型(一)

隐马尔科夫模型(HMM)是一种统计模型,常用于处理序列数据。其特征在于存在可观测序列和不可观测(隐藏)状态序列。模型假设隐藏状态仅依赖于前一个状态,而观测状态只依赖于当前隐藏状态。HMM由初始概率矩阵Π、状态转移矩阵A和观测状态概率矩阵B决定。模型解决的主要问题包括评估观测序列概率、参数学习和解码问题,分别使用前向后向算法、EM算法的鲍姆-韦尔奇算法和维特比算法来处理。
摘要由CSDN通过智能技术生成

隐马尔科夫模型(一)

简介

隐马尔可夫模型与贝叶斯信念相似。其用于在给定当前知识或信息的情况下,观察对象过去的历史状态对于预测将来是无关的。也可以说,在观察一个系统变化的时候,它下一个状态(第n+1个状态)如何的概率只需要观察和统计当前状态(第n个状态)即可以正确得出。

  • 举例说明
    3种骰子和掷骰子可能产生的结果如图所示。

    先随机选择一个骰子,然后再用它掷出一个数字,可能得到这么一串数字(掷骰子10次):1、6、3、5、2、7、3、5、2、4,这串数字叫做可见状链。隐含状态链就是选出的骰子的序列。例如,隐含状态链有可能是D6、D8、D8、D6、D4、D8、D6、D6、D4、D8。

特征

  • 我们的问题是基于序列的,比如时间序列,或者状态序列。
  • 我们的问题中有两类数据,一类序列数据是可以观测到的,即观测序列;而另一类数据是不能观察到的,即隐藏状态序列,简称状态序列。

假设

  • 即任意时刻的隐藏状态只依赖于它前一个隐藏状态
  • 即任意时刻的观察状态只仅仅依赖于当前时刻的隐藏状态,这也是一个为了简化模型的假设。

参数说明

隐藏状态集合与观察状态集合

Q 是所有可能的隐藏状态的集合、 V 是所有可能的观测状态的集合:

Q={ q1,q2,...,qN},V={ v1,v2,...vM}

状态序列与观察序列

对于一个长度为 T 的序列, I 对应的状态序列, O 是对应的观察序列,即:

I={i1,i2,...,iT},O={o1,o2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值