隐马尔科夫模型(一)
简介
隐马尔可夫模型与贝叶斯信念相似。其用于在给定当前知识或信息的情况下,观察对象过去的历史状态对于预测将来是无关的。也可以说,在观察一个系统变化的时候,它下一个状态(第n+1个状态)如何的概率只需要观察和统计当前状态(第n个状态)即可以正确得出。
- 举例说明
3种骰子和掷骰子可能产生的结果如图所示。
先随机选择一个骰子,然后再用它掷出一个数字,可能得到这么一串数字(掷骰子10次):1、6、3、5、2、7、3、5、2、4,这串数字叫做可见状链。隐含状态链就是选出的骰子的序列。例如,隐含状态链有可能是D6、D8、D8、D6、D4、D8、D6、D6、D4、D8。
特征
- 我们的问题是基于序列的,比如时间序列,或者状态序列。
- 我们的问题中有两类数据,一类序列数据是可以观测到的,即观测序列;而另一类数据是不能观察到的,即隐藏状态序列,简称状态序列。
假设
- 即任意时刻的隐藏状态只依赖于它前一个隐藏状态
- 即任意时刻的观察状态只仅仅依赖于当前时刻的隐藏状态,这也是一个为了简化模型的假设。
参数说明
隐藏状态集合与观察状态集合
Q 是所有可能的隐藏状态的集合、
Q={
q1,q2,...,qN},V={
v1,v2,...vM}
状态序列与观察序列
对于一个长度为 T 的序列,