第四讲 一元函数微分学的计算

前言

这里记录我考研数学复习中的复习规范,通过文章格式严格要求自己每一章需要完成到什么程度,以及对我的复习提供一些帮助

听课评估

这一章主要是学习各种题型的求导方式,不难,但这一章粗心犯的错也很多。

概念理解与记忆

  1. 基本求导公式
  2. 分段函数求导、求反函数的导数、隐函数求导、对数求导、幂指函数求导
  3. 高阶导数:归纳法、泰勒展开式、莱布尼兹

题源理解(1000题)

  1. Ⅰ:粗心,n个负数相乘认为为负
  2. Ⅰ:没有理解y(-1)=0的含义,导致这个条件一直没有用上,自己一直在对式子求导
  3. Ⅰ:一开始想到隐函数求导,因为很难转化为y关于x的方程,这个思路是对的,但是需要掌握另一种方法。我直接对式子两边求导,解出y’,再令y’=0,但是做不动,算不下去。
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
7. Ⅰ:没有正确理解参数方程求导的做法,两边求导,dx/dt:x对t求导,x作为中间变量。dy/dt:y对t求导,y作为中间变量
8.Ⅰ:一开始不懂以为我要用导数证明 fx连续,我一直不知道咋证,因为常见的就是用导数证明这一点连续,实际上我们要利用初等函数的性质——初等函数在其定义域内连续
在这里插入图片描述
点一:当证明f(x)连续的时候,函数是由两段不同表达式在t=0处衔接起来的,不能简单认为一定连续,因为连续最基本的概念是函数在某一点处的取值与该点附近的取值之间的一种 “不间断”“无跳跃” 的性质。从直观上理解,就是函数的图像在该点处没有断开、没有缝隙,是一条连续不断的曲线,所以必须还要讨论一下在t=0处极限。很简单我们能证明fx趋向于0+与0-等于f(0)

9.√
10.√
11.Ⅰ:这道题观察到了ln(2-x),但是不知道怎么处理2,如果采用泰勒展开式,还需要进行恒等变形,如果采用莱布尼兹就简单一些
在这里插入图片描述

在这里插入图片描述

课后习题

4.1

4.2
在这里插入图片描述

4.3

4.4

Ⅰ:如图:
在这里插入图片描述

4.5
Ⅰ:如图
在这里插入图片描述

4.6
Ⅰ:如图
在这里插入图片描述

4.7
Ⅰ:如图
在这里插入图片描述

4.8
Ⅰ:能有正确的思路,但是在一阶导数公式出错,以及不知道该怎么求x=0分段点时的导数f’(x)。需要记住,x->0,并不是x=0,x永远靠近0,但不为0
在这里插入图片描述

刷题收获与学习评估

这一章的1000T,第6题、第八题、第十一题都挺有意思的,后面再去做一遍
这一章需要记忆的有一些基本的求导公式、反函数求导公式、隐函数求导公式

一周记忆(记录回顾时间)

2/18

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fan_558

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值