有一堆煤球,堆成三角棱锥形。具体:
第一层放1个,
第二层3个(排列成三角形),
第三层6个(排列成三角形),
第四层10个(排列成三角形),
....
如果一共有100层,共有多少个煤球?171700
请填表示煤球总数目的数字。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
f1 =1
f2=3
f3=6
f4=10
..,
fn=f(n-1)+n
public class test1 {
public static void main(String[] args) {
int sum=0;
for(int i=1;i<=100;i++)
sum+=an(i);
System.out.println(sum);
}
private static int an(int n){
if(1==n)
return 1;
else
return an(n-1)+n;
}
}
2,生日蜡烛
某君从某年开始每年都举办一次生日party,并且每次都要吹熄与年龄相同根数的蜡烛。
现在算起来,他一共吹熄了236根蜡烛。
请问,他从多少岁开始过生日party的?
请填写他开始过生日party的年龄数。
(x+n)*(n-x+1)==236*2=n*n-x*x 求A1
for(int n=100;n>0;n--){
sysout sqrt(n*n-236*2)
}
public class test2 {
public static void main(String[] args) {
for(int n=1;n<=100;n++){
for(int x=1;x<=100;x++)
if((x+n)*(n-x+1)==236*2)
System.out.println(x);
}
}
}
3,凑算式
B DEF
A + --- + ------- = 10
C GHI
(b*(g*100+h*10+i)+c*(d*100+e*10+f))%(c*(g*100+h*10+i))==0
(如果显示有问题,可以参见【图1.jpg】)
这个算式中A~I代表1~9的数字,不同的字母代表不同的数字。
比如:
6+8/3+952/714 就是一种解法,
5+3/1+972/486 是另一种解法。
这个算式一共有多少种解法?
public class test3 {
public static void main(String[] args) {
// TODO Auto-generated method stub
int sum = 0;
for (int a = 1; a <= 9; a++)
for (int b = 1; b <= 9; b++)
for (int c = 1; c <= 9; c++)
for (int d = 1; d <= 9; d++)
for (int e = 1; e <= 9; e++)
for (int f = 1; f <= 9; f++)
for (int g = 1; g <= 9; g++)
for (int h = 1; h <= 9; h++)
for (int i = 1; i <= 9; i++)
if ((b * (g * 100 + h * 10 + i) + c * (d * 100 + e * 10 + f))
% (c * (g * 100 + h * 10 + i)) == 0) {
int temp = (b * (g * 100 + h * 10 + i) + c * (d * 100 + e * 10 + f))
/ (c * (g * 100 + h * 10 + i));
if (a + temp == 10)
if (a != b && a != c && a != d && a != e && a != f && a != g
&& a != h && a != i)
if (b != c && b != d && b != e && b != f && b != g && b != h
&& b != i)
if (c != d && c != e && c != f && c != g && c != h
&& c != i)
if (d != e && d != f && d != g && d != h && d != i)
if (e != f && e != g && e != h && e != i)
if (f != g && f != h && f != i)
if (g != h && g != i)
if (h != i) {
sum++;
}
}
System.out.println(sum);
}
}
4,分小组
9名运动员参加比赛,需要分3组进行预赛。
有哪些分组的方案呢?
我们标记运动员为 A,B,C,... I
下面的程序列出了所有的分组方法。
该程序的正常输出为:
ABC DEF GHI
ABC DEG FHI
ABC DEH FGI
ABC DEI FGH
ABC DFG EHI
ABC DFH EGI
ABC DFI EGH
ABC DGH EFI
ABC DGI EFH
ABC DHI EFG
ABC EFG DHI
ABC EFH DGI
ABC EFI DGH
ABC EGH DFI
ABC EGI DFH
ABC EHI DFG
ABC FGH DEI
ABC FGI DEH
ABC FHI DEG
ABC GHI DEF
ABD CEF GHI
ABD CEG FHI
ABD CEH FGI
ABD CEI FGH
ABD CFG EHI
ABD CFH EGI
ABD CFI EGH
ABD CGH EFI
ABD CGI EFH
ABD CHI EFG
ABD EFG CHI
..... (以下省略,总共560行)。
public class test4
{
public static String remain(int[] a)
{
String s = "";
for(int i=0; i<a.length; i++){
if(a[i] == 0) s += (char)(i+'A');
}
return s;
}
// static int sum=0;
public static void f(String s, int[] a)
{
for(int i=0; i<a.length; i++){
if(a[i]==1) continue;
a[i] = 1;
for(int j=i+1; j<a.length; j++){
if(a[j]==1) continue;
a[j]=1;
for(int k=j+1; k<a.length; k++){
if(a[k]==1) continue;
a[k]=1;
// sum++;
System.out.println(s+" "+(char)(i+'A')+(char)(j+'A')+(char)(k+'A')+" "+remain(a)); //填空位置+
a[k]=0;
}
a[j]=0;
}
a[i] = 0;
}
}
public static void main(String[] args)
{
int[] a = new int[9];
a[0] = 1;
for(int b=1; b<a.length; b++){
a[b] = 1;
for(int c=b+1; c<a.length; c++){
a[c] = 1;
String s = "A" + (char)(b+'A') + (char)(c+'A');
f(s,a);
a[c] = 0;
}
a[b] = 0;
}
}
}
5,抽签
X星球要派出一个5人组成的观察团前往W星。
其中:
A国最多可以派出4人。
B国最多可以派出2人。
C国最多可以派出2人。
....
那么最终派往W星的观察团会有多少种国别的不同组合呢?
下面的程序解决了这个问题。
数组a[] 中既是每个国家可以派出的最多的名额。
程序执行结果为:
DEFFF
CEFFF
CDFFF
CDEFF
CCFFF
CCEFF
CCDFF
CCDEF
BEFFF
BDFFF
BDEFF
BCFFF
BCEFF
BCDFF
BCDEF
....
(以下省略,总共101行)
public class test5
{
static int sum = 0;
public static void f(int[] a, int k, int n, String s)
{
if(k==a.length){
if(n==0){
System.out.println(s);//defff
sum++;
}
return;
}
String s2 = s;
for(int i=0; i<=a[k]; i++){
f(a,k+1,/*5-s2.length()*/n-i,s2);//填空位置
s2 += (char)(k+'A');
}
}
public static void main(String[] args)
{
int[] a = {4,2,2,1,1,3};
f(a,0,5,"");
System.out.println(sum);
}
}
6,方格填数
如下的10个格子
+--+--+--+
| | | | 1 2 3
+--+--+--+--+ 4 5 6 7
| | | | | 8 9 10
+--+--+--+--+
| | | |
+--+--+--+
(如果显示有问题,也可以参看【图1.jpg】)
填入0~9的数字。要求:连续的两个数字不能相邻。
(左右、上下、对角都算相邻)
一共有多少种可能的填数方案?
请填写表示方案数目的整数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
//dfs 暴力枚举?
public class test6 {
static int[] vis = new int[11];
static int[] a = new int[11];//result
static int sum = 0;
static void dfs(int n){
if(n>10)
{
if(Math.abs(a[1]-a[2])>1 && Math.abs(a[1]-a[4])>1 && Math.abs(a[1]-a[5])>1 && Math.abs(a[1]-a[6])>1
&& Math.abs(a[2]-a[3])>1 && Math.abs(a[2]-a[5])>1 && Math.abs(a[2]-a[6])>1 && Math.abs(a[2]-a[7])>1
&& Math.abs(a[3]-a[6])>1 && Math.abs(a[3]-a[7])>1
&& Math.abs(a[4]-a[5])>1 && Math.abs(a[4]-a[8])>1 && Math.abs(a[4]-a[9])>1
&& Math.abs(a[5]-a[6])>1 && Math.abs(a[5]-a[8])>1 && Math.abs(a[5]-a[9])>1 && Math.abs(a[5]-a[10])>1
&& Math.abs(a[6]-a[7])>1 && Math.abs(a[6]-a[9])>1 && Math.abs(a[6]-a[10])>1
&& Math.abs(a[7]-a[10])>1
&& Math.abs(a[8]-a[9])>1 && Math.abs(a[9]-a[10])>1)
sum++;
}
for(int i=0;i<=9;i++){
if(vis[i]==0){
vis[i]=1;//标记vis
a[n]=i;//填數
dfs(n+1);//下一個
vis[i]=0;//清除标记 !!!!
}
}
}
public static void main(String[] args) {
for(int j=0;j<11;j++){
vis[j]=0;
}
dfs(1);
System.out.println(sum);
}
}
7,
剪邮票
如【图1.jpg】, 有12张连在一起的12生肖的邮票。
现在你要从中剪下5张来,要求必须是连着的。
(仅仅连接一个角不算相连)
比如,【图2.jpg】,【图3.jpg】中,粉红色所示部分就是合格的剪取。
请你计算,一共有多少种不同的剪取方法。
public class test7 {
static int[] a = new int[5];//所有的排列结果
static int sum = 0;
//0 1 2 3 为了便于验证同一行 同一列 更改数字从0开始
//4 5 6 7
//8 9 10 11
static void dfs(int n,int[] vis){//第N位置 dfs五个数是否相连 相连标记为1
vis[n]=1;
for(int i =0;i<5;i++){
if(vis[i]==0 && (a[n]/4==a[i]/4) && (Math.abs(a[n]-a[i])==1))//同一行
dfs(i,vis);
if(vis[i]==0 && (a[n]%4==a[i]%4) && (Math.abs(a[n]-a[i])==4))//同一列
dfs(i,vis);
}
}
private static boolean check() {
int[] vis = {0,0,0,0,0};
dfs(0,vis);
return (vis[0]==1&&vis[1]==1&&vis[2]==1&&vis[3]==1&&vis[4]==1);
}
public static void main(String[] args) {
//排列出从小到大的五个数 模板
for(a[0]=0;a[0]<=7;a[0]++)
for(a[1]=a[0]+1;a[1]<=8;a[1]++)
for(a[2]=a[1]+1;a[2]<=9;a[2]++)
for(a[3]=a[2]+1;a[3]<=10;a[3]++)
for(a[4]=a[3]+1;a[4]<=11;a[4]++){
if(check())
sum++;
}
System.out.println(sum);
}
}
8,四平方和
四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。
如果把0包括进去,就正好可以表示为4个数的平方和。
比如:
5 = 0^2 + 0^2 + 1^2 + 2^2
7 = 1^2 + 1^2 + 1^2 + 2^2
(^符号表示乘方的意思)
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0 <= a <= b <= c <= d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法
程序输入为一个正整数N (N<5000000)
要求输出4个非负整数,按从小到大排序,中间用空格分开
例如,输入:
5
则程序应该输出:
0 0 1 2
再例如,输入:
12
则程序应该输出:
0 2 2 2
再例如,输入:
773535
则程序应该输出:
1 1 267 838
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 3000ms
import java.util.Scanner;
public class test8 {
public static void main(String[] args) {
// ArrayList<String> ss = new ArrayList<String>();
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long start = System.currentTimeMillis();
for(int a=0;a<=(int)Math.sqrt(n);a++)
for(int b=a;b<=(int)Math.sqrt(n);b++)
for(int c=b;c<=(int)Math.sqrt(n);c++)
{
int d = (int)Math.sqrt(n-a*a-b*b-c*c);
if(a*a+b*b+c*c+d*d==n && d>=c){
// ss.add(""+a+b+c+d);
// ss.add(a+" "+b+" "+c+" "+d);
System.out.println(a+" "+b+" "+c+" "+d);
long end = System.currentTimeMillis();
System.out.println(end-start);
return;
}
}
// Collections.sort(ss);
// System.out.println(ss.get(0));
// long end = System.currentTimeMillis();
// System.out.println(end-start);
}
}
9,
取球博弈
两个人玩取球的游戏。
一共有N个球,每人轮流取球,每次可取集合{n1,n2,n3}中的任何一个数目。
如果无法继续取球,则游戏结束。
此时,持有奇数个球的一方获胜。
如果两人都是奇数,则为平局。
假设双方都采用最聪明的取法,
第一个取球的人一定能赢吗?
试编程解决这个问题。
输入格式:
第一行3个正整数n1 n2 n3,空格分开,表示每次可取的数目 (0<n1,n2,n3<100)
第二行5个正整数x1 x2 ... x5,空格分开,表示5局的初始球数(0<xi<1000)
输出格式:
一行5个字符,空格分开。分别表示每局先取球的人能否获胜。
能获胜则输出+,
次之,如有办法逼平对手,输出0,
无论如何都会输,则输出-
例如,输入:
1 2 3
1 2 3 4 5
程序应该输出:
+ 0 + 0 -
再例如,输入:
1 4 5
10 11 12 13 15
程序应该输出:
0 - 0 + +
再例如,输入:
2 3 5
7 8 9 10 11
程序应该输出:
+ 0 0 0 0
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 3000ms
import java.util.Scanner;
public class _9取球博弈 {
public static int [] n = new int[3];
public static int [] init = new int[5];
public static int [] end = new int[1000];
public static char [] sign = {'-','0','0','+'};
public static void main(String [] args){
Scanner scan = new Scanner(System.in);
for(int i = 0; i < 3; i++){
n[i] = scan.nextInt();
}
int Min = Math.min(n[0], Math.min(n[1], n[2]));
for(int i = 0; i < 5; i++){
init[i] = scan.nextInt();
}
for(int i = 0; i < Min; i++){
end[i] = 2;
}
for(int i = Min; i < end.length; i++){
int temp = 0;
for(int j =0; j < 3; j++){
if(i - n[j] < 0)
continue;
else if(end[i-n[j]] == 3){
if(n[j]%2 != 0)
temp = 1 > temp ? 1 : temp;
}
else if(end[i-n[j]] == 0){
if(n[j]%2 == 0)
temp = 3;
else
temp = 2 > temp ? 2 : temp;
}
else if(end[i-n[j]] == 2){
if(n[j]%2==0)
temp = 2 > temp ? 2 : temp;
else
temp = 3;
}
else if(end[i-n[j]] == 1){
if(n[j]%2==0)
temp = 1 > temp ? 1 : temp;
}
}
end[i] = temp;
}
for(int i = 0; i < 5; i++){
System.out.print(sign[end[init[i]]]+" ");
}
}
}
博弈问题入门题