深度学习需要掌握的数学知识②【线性代数-part2】

线性方程组

1.克莱姆法则

线性方程组 { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots +a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} =b_{2} \\ \quad\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{{nn}}x_{n} = b_{n} \\ \end{cases} a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2⋯⋯⋯⋯⋯⋯⋯⋯⋯an1x1+an2x2++annxn=bn,如果系数行列式 D = ∣ A ∣ ≠ 0 D = \left| A \right| \neq 0 D=A=0,则方程组有唯一解, x 1 = D 1 D , x 2 = D 2 D , ⋯   , x n = D n D x_{1} = \frac{D_{1}}{D},x_{2} = \frac{D_{2}}{D},\cdots,x_{n} =\frac{D_{n}}{D} x1=DD1,x2=DD2,,xn=DDn,其中 D j D_{j} Dj是把 D D D中第 j j j列元素换成方程组右端的常数列所得的行列式。

2. n n n阶矩阵 A A A可逆 ⇔ A x = 0 \Leftrightarrow Ax = 0 Ax=0只有零解。 ⇔ ∀ b , A x = b \Leftrightarrow\forall b,Ax = b b,Ax=b总有唯一解,一般地, r ( A m × n ) = n ⇔ A x = 0 r(A_{m \times n}) = n \Leftrightarrow Ax= 0 r(Am×n)=nAx=0只有零解。

3.非奇次线性方程组有解的充分必要条件,线性方程组解的性质和解的结构

(1) 设 A A A m × n m \times n m×n矩阵,若 r ( A m × n ) = m r(A_{m \times n}) = m r(Am×n)=m,则对 A x = b Ax =b Ax=b而言必有 r ( A ) = r ( A ⋮ b ) = m r(A) = r(A \vdots b) = m r(A)=r(Ab)=m,从而 A x = b Ax = b Ax=b有解。

(2) 设 x 1 , x 2 , ⋯ x s x_{1},x_{2},\cdots x_{s} x1,x2,xs A x = b Ax = b Ax=b的解,则 k 1 x 1 + k 2 x 2 ⋯ + k s x s k_{1}x_{1} + k_{2}x_{2}\cdots + k_{s}x_{s} k1x1+k2x2+ksxs k 1 + k 2 + ⋯ + k s = 1 k_{1} + k_{2} + \cdots + k_{s} = 1 k1+k2++ks=1时仍为 A x = b Ax =b Ax=b的解;但当 k 1 + k 2 + ⋯ + k s = 0 k_{1} + k_{2} + \cdots + k_{s} = 0 k1+k2++ks=0时,则为 A x = 0 Ax =0 Ax=0的解。特别 x 1 + x 2 2 \frac{x_{1} + x_{2}}{2} 2x1+x2 A x = b Ax = b Ax=b的解; 2 x 3 − ( x 1 + x 2 ) 2x_{3} - (x_{1} +x_{2}) 2x3(x1+x2) A x = 0 Ax = 0 Ax=0的解。

(3) 非齐次线性方程组 A x = b {Ax} = b Ax=b无解 ⇔ r ( A ) + 1 = r ( A ‾ ) ⇔ b \Leftrightarrow r(A) + 1 =r(\overline{A}) \Leftrightarrow b r(A)+1=r(A)b不能由 A A A的列向量 α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn线性表示。

4.奇次线性方程组的基础解系和通解,解空间,非奇次线性方程组的通解

(1) 齐次方程组 A x = 0 {Ax} = 0 Ax=0恒有解(必有零解)。当有非零解时,由于解向量的任意线性组合仍是该齐次方程组的解向量,因此 A x = 0 {Ax}= 0 Ax=0的全体解向量构成一个向量空间,称为该方程组的解空间,解空间的维数是 n − r ( A ) n - r(A) nr(A),解空间的一组基称为齐次方程组的基础解系。

(2) η 1 , η 2 , ⋯   , η t \eta_{1},\eta_{2},\cdots,\eta_{t} η1,η2,,ηt A x = 0 {Ax} = 0 Ax=0的基础解系,即:

  1. η 1 , η 2 , ⋯   , η t \eta_{1},\eta_{2},\cdots,\eta_{t} η1,η2,,ηt A x = 0 {Ax} = 0 Ax=0的解;

  2. η 1 , η 2 , ⋯   , η t \eta_{1},\eta_{2},\cdots,\eta_{t} η1,η2,,ηt线性无关;

  3. A x = 0 {Ax} = 0 Ax=0的任一解都可以由 η 1 , η 2 , ⋯   , η t \eta_{1},\eta_{2},\cdots,\eta_{t} η1,η2,,ηt线性表出.
    k 1 η 1 + k 2 η 2 + ⋯ + k t η t k_{1}\eta_{1} + k_{2}\eta_{2} + \cdots + k_{t}\eta_{t} k1η1+k2η2++ktηt A x = 0 {Ax} = 0 Ax=0的通解,其中 k 1 , k 2 , ⋯   , k t k_{1},k_{2},\cdots,k_{t} k1,k2,,kt是任意常数。

矩阵的特征值和特征向量

1.矩阵的特征值和特征向量的概念及性质

(1) 设 λ \lambda λ A A A的一个特征值,则 k A , a A + b E , A 2 , A m , f ( A ) , A T , A − 1 , A ∗ {kA},{aA} + {bE},A^{2},A^{m},f(A),A^{T},A^{- 1},A^{*} kA,aA+bE,A2,Am,f(A),AT,A1,A有一个特征值分别为
k λ , a λ + b , λ 2 , λ m , f ( λ ) , λ , λ − 1 , ∣ A ∣ λ , {kλ},{aλ} + b,\lambda^{2},\lambda^{m},f(\lambda),\lambda,\lambda^{- 1},\frac{|A|}{\lambda}, ,+b,λ2,λm,f(λ),λ,λ1,λA,且对应特征向量相同( A T A^{T} AT 例外)。

(2)若 λ 1 , λ 2 , ⋯   , λ n \lambda_{1},\lambda_{2},\cdots,\lambda_{n} λ1,λ2,,λn A A A n n n个特征值,则 ∑ i = 1 n λ i = ∑ i = 1 n a i i , ∏ i = 1 n λ i = ∣ A ∣ \sum_{i= 1}^{n}\lambda_{i} = \sum_{i = 1}^{n}a_{{ii}},\prod_{i = 1}^{n}\lambda_{i}= |A| i=1nλi=i=1naii,i=1nλi=A ,从而 ∣ A ∣ ≠ 0 ⇔ A |A| \neq 0 \Leftrightarrow A A=0A没有特征值。

(3)设 λ 1 , λ 2 , ⋯   , λ s \lambda_{1},\lambda_{2},\cdots,\lambda_{s} λ1,λ2,,λs A A A s s s个特征值,对应特征向量为 α 1 , α 2 , ⋯   , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,,αs

若: α = k 1 α 1 + k 2 α 2 + ⋯ + k s α s \alpha = k_{1}\alpha_{1} + k_{2}\alpha_{2} + \cdots + k_{s}\alpha_{s} α=k1α1+k2α2++ksαs ,

则: A n α = k 1 A n α 1 + k 2 A n α 2 + ⋯ + k s A n α s = k 1 λ 1 n α 1 + k 2 λ 2 n α 2 + ⋯ k s λ s n α s A^{n}\alpha = k_{1}A^{n}\alpha_{1} + k_{2}A^{n}\alpha_{2} + \cdots +k_{s}A^{n}\alpha_{s} = k_{1}\lambda_{1}^{n}\alpha_{1} +k_{2}\lambda_{2}^{n}\alpha_{2} + \cdots k_{s}\lambda_{s}^{n}\alpha_{s} Anα=k1Anα1+k2Anα2++ksAnαs=k1λ1nα1+k2λ2nα2+ksλsnαs

2.相似变换、相似矩阵的概念及性质

(1) 若 A ∼ B A \sim B AB,则

  1. A T ∼ B T , A − 1 ∼ B − 1 , , A ∗ ∼ B ∗ A^{T} \sim B^{T},A^{- 1} \sim B^{- 1},,A^{*} \sim B^{*} ATBT,A1B1,,AB

  2. ∣ A ∣ = ∣ B ∣ , ∑ i = 1 n A i i = ∑ i = 1 n b i i , r ( A ) = r ( B ) |A| = |B|,\sum_{i = 1}^{n}A_{{ii}} = \sum_{i =1}^{n}b_{{ii}},r(A) = r(B) A=B,i=1nAii=i=1nbii,r(A)=r(B)

  3. ∣ λ E − A ∣ = ∣ λ E − B ∣ |\lambda E - A| = |\lambda E - B| λEA=λEB,对 ∀ λ \forall\lambda λ成立

3.矩阵可相似对角化的充分必要条件

(1)设 A A A n n n阶方阵,则 A A A可对角化 ⇔ \Leftrightarrow 对每个 k i k_{i} ki重根特征值 λ i \lambda_{i} λi,有 n − r ( λ i E − A ) = k i n-r(\lambda_{i}E - A) = k_{i} nr(λiEA)=ki

(2) 设 A A A可对角化,则由 P − 1 A P = Λ , P^{- 1}{AP} = \Lambda, P1AP=Λ, A = P Λ P − 1 A = {PΛ}P^{-1} A=PΛP1,从而 A n = P Λ n P − 1 A^{n} = P\Lambda^{n}P^{- 1} An=PΛnP1

(3) 重要结论

  1. A ∼ B , C ∼ D A \sim B,C \sim D AB,CD,则 [ A O O C ] ∼ [ B O O D ] \begin{bmatrix} A & O \\ O & C \\\end{bmatrix} \sim \begin{bmatrix} B & O \\ O & D \\\end{bmatrix} [AOOC][BOOD].

  2. A ∼ B A \sim B AB,则 f ( A ) ∼ f ( B ) , ∣ f ( A ) ∣ ∼ ∣ f ( B ) ∣ f(A) \sim f(B),\left| f(A) \right| \sim \left| f(B)\right| f(A)f(B),f(A)f(B),其中 f ( A ) f(A) f(A)为关于 n n n阶方阵 A A A的多项式。

  3. A A A为可对角化矩阵,则其非零特征值的个数(重根重复计算)=秩( A A A)

4.实对称矩阵的特征值、特征向量及相似对角阵

(1)相似矩阵:设 A , B A,B A,B为两个 n n n阶方阵,如果存在一个可逆矩阵 P P P,使得 B = P − 1 A P B =P^{- 1}{AP} B=P1AP成立,则称矩阵 A A A B B B相似,记为 A ∼ B A \sim B AB

(2)相似矩阵的性质:如果 A ∼ B A \sim B AB则有:

  1. A T ∼ B T A^{T} \sim B^{T} ATBT

  2. A − 1 ∼ B − 1 A^{- 1} \sim B^{- 1} A1B1 (若 A A A B B B均可逆)

  3. A k ∼ B k A^{k} \sim B^{k} AkBk k k k为正整数)

  4. ∣ λ E − A ∣ = ∣ λ E − B ∣ \left| {λE} - A \right| = \left| {λE} - B \right| λEA=λEB,从而 A , B A,B A,B
    有相同的特征值

  5. ∣ A ∣ = ∣ B ∣ \left| A \right| = \left| B \right| A=B,从而 A , B A,B A,B同时可逆或者不可逆

  6. ( A ) = \left( A \right) = (A)= ( B ) , ∣ λ E − A ∣ = ∣ λ E − B ∣ \left( B \right),\left| {λE} - A \right| =\left| {λE} - B \right| (B),λEA=λEB A , B A,B A,B不一定相似

二次型

1. n \mathbf{n} n个变量 x 1 , x 2 , ⋯   , x n \mathbf{x}_{\mathbf{1}}\mathbf{,}\mathbf{x}_{\mathbf{2}}\mathbf{,\cdots,}\mathbf{x}_{\mathbf{n}} x1,x2,,xn的二次齐次函数

f ( x 1 , x 2 , ⋯   , x n ) = ∑ i = 1 n ∑ j = 1 n a i j x i y j f(x_{1},x_{2},\cdots,x_{n}) = \sum_{i = 1}^{n}{\sum_{j =1}^{n}{a_{{ij}}x_{i}y_{j}}} f(x1,x2,,xn)=i=1nj=1naijxiyj,其中 a i j = a j i ( i , j = 1 , 2 , ⋯   , n ) a_{{ij}} = a_{{ji}}(i,j =1,2,\cdots,n) aij=aji(i,j=1,2,,n),称为 n n n元二次型,简称二次型. 若令 x =   [ x 1 x 1 ⋮ x n ] , A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a n 1 a n 2 ⋯ a n n ] x = \ \begin{bmatrix}x_{1} \\ x_{1} \\ \vdots \\ x_{n} \\ \end{bmatrix},A = \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \cdots &\cdots &\cdots &\cdots \\ a_{n1}& a_{n2} & \cdots & a_{{nn}} \\\end{bmatrix} x=  x1x1xn ,A= a11a21an1a12a22an2a1na2nann ,这二次型 f f f可改写成矩阵向量形式 f = x T A x f =x^{T}{Ax} f=xTAx。其中 A A A称为二次型矩阵,因为 a i j = a j i ( i , j = 1 , 2 , ⋯   , n ) a_{{ij}} =a_{{ji}}(i,j =1,2,\cdots,n) aij=aji(i,j=1,2,,n),所以二次型矩阵均为对称矩阵,且二次型与对称矩阵一一对应,并把矩阵 A A A的秩称为二次型的秩。

2.惯性定理,二次型的标准形和规范形

(1) 惯性定理

对于任一二次型,不论选取怎样的合同变换使它化为仅含平方项的标准型,其正负惯性指数与所选变换无关,这就是所谓的惯性定理。

(2) 标准形

二次型 f = ( x 1 , x 2 , ⋯   , x n ) = x T A x f = \left( x_{1},x_{2},\cdots,x_{n} \right) =x^{T}{Ax} f=(x1,x2,,xn)=xTAx经过合同变换 x = C y x = {Cy} x=Cy化为 f = x T A x = y T C T A C f = x^{T}{Ax} =y^{T}C^{T}{AC} f=xTAx=yTCTAC

y = ∑ i = 1 r d i y i 2 y = \sum_{i = 1}^{r}{d_{i}y_{i}^{2}} y=i=1rdiyi2称为 f ( r ≤ n ) f(r \leq n) f(rn)的标准形。在一般的数域内,二次型的标准形不是唯一的,与所作的合同变换有关,但系数不为零的平方项的个数由 r ( A ) r(A) r(A)唯一确定。

(3) 规范形

任一实二次型 f f f都可经过合同变换化为规范形 f = z 1 2 + z 2 2 + ⋯ z p 2 − z p + 1 2 − ⋯ − z r 2 f = z_{1}^{2} + z_{2}^{2} + \cdots z_{p}^{2} - z_{p + 1}^{2} - \cdots -z_{r}^{2} f=z12+z22+zp2zp+12zr2,其中 r r r A A A的秩, p p p为正惯性指数, r − p r -p rp为负惯性指数,且规范型唯一。

3.用正交变换和配方法化二次型为标准形,二次型及其矩阵的正定性

A A A正定 ⇒ k A ( k > 0 ) , A T , A − 1 , A ∗ \Rightarrow {kA}(k > 0),A^{T},A^{- 1},A^{*} kA(k>0),AT,A1,A正定; ∣ A ∣ > 0 |A| >0 A>0, A A A可逆; a i i > 0 a_{{ii}} > 0 aii>0,且 ∣ A i i ∣ > 0 |A_{{ii}}| > 0 Aii>0

A A A B B B正定 ⇒ A + B \Rightarrow A +B A+B正定,但 A B {AB} AB B A {BA} BA不一定正定

A A A正定 ⇔ f ( x ) = x T A x > 0 , ∀ x ≠ 0 \Leftrightarrow f(x) = x^{T}{Ax} > 0,\forall x \neq 0 f(x)=xTAx>0,x=0

⇔ A \Leftrightarrow A A的各阶顺序主子式全大于零

⇔ A \Leftrightarrow A A的所有特征值大于零

⇔ A \Leftrightarrow A A的正惯性指数为 n n n

⇔ \Leftrightarrow 存在可逆阵 P P P使 A = P T P A = P^{T}P A=PTP

⇔ \Leftrightarrow 存在正交矩阵 Q Q Q,使 Q T A Q = Q − 1 A Q = ( λ 1 ⋱ λ n ) , Q^{T}{AQ} = Q^{- 1}{AQ} =\begin{pmatrix} \lambda_{1} & & \\ \begin{matrix} & \\ & \\ \end{matrix} &\ddots & \\ & & \lambda_{n} \\ \end{pmatrix}, QTAQ=Q1AQ= λ1λn ,

其中 λ i > 0 , i = 1 , 2 , ⋯   , n . \lambda_{i} > 0,i = 1,2,\cdots,n. λi>0,i=1,2,,n.正定 ⇒ k A ( k > 0 ) , A T , A − 1 , A ∗ \Rightarrow {kA}(k >0),A^{T},A^{- 1},A^{*} kA(k>0),AT,A1,A正定; ∣ A ∣ > 0 , A |A| > 0,A A>0,A可逆; a i i > 0 a_{{ii}} >0 aii>0,且 ∣ A i i ∣ > 0 |A_{{ii}}| > 0 Aii>0

奇异值分解(SVD)

参考文章:SVD原理总结

奇异值分解(SVD)在降维,数据压缩,推荐系统等有广泛的应用,任何矩阵都可以进行奇异值分解。下面通过正交变换不改变基向量间的夹角循序渐进的推导SVD算法,以及用协方差含义去理解行降维和列降维,最后介绍了SVD的数据压缩原理 。

1.正交变化

X = U Y X=UY X=UY

上式表示:X是Y的正交变换 ,其中U是正交矩阵,X和Y为列向量 。

正交变换的含义:

假设有两个单位列向量 a ⃗ , b ⃗ \vec{a},\vec{b} a ,b ,两向量的夹角为 θ θ θ,如图:

对向量 a ⃗ , b ⃗ \vec{a},\vec{b} a ,b 进行正交变换:
a ′ ⃗ = U ∗ a ⃗ b ′ ⃗ = U ∗ b ⃗ \vec{a^{'}}=U*\vec{a} \qquad \vec{b^{'}}=U*\vec{b} a =Ua b =Ub
a ′ ⃗ , b ′ ⃗ \vec{a^{'}},\vec{b^{'}} a ,b 的模(正交变换不改变向量的模)【 ∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣表示范数,也有距离、长度的概念】:
∣ ∣ a ′ ⃗ ∣ ∣ = ∣ ∣ U ∗ a ⃗ ∣ ∣ = ∣ ∣ U ∣ ∣ ∗ ∣ ∣ a ⃗ ∣ ∣ = ∣ ∣ a ⃗ ∣ ∣ = 1 ∣ ∣ b ′ ⃗ ∣ ∣ = ∣ ∣ U ∗ b ⃗ ∣ ∣ = ∣ ∣ U ∣ ∣ ∗ ∣ ∣ b ⃗ ∣ ∣ = ∣ ∣ b ⃗ ∣ ∣ = 1 ||\vec{a^{'}}||=||U*\vec{a}||=||U||*||\vec{a}||=||\vec{a}||=1\\ ||\vec{b^{'}}||=||U*\vec{b}||=||U||*||\vec{b}||=||\vec{b}||=1 ∣∣a ∣∣=∣∣Ua ∣∣=∣∣U∣∣∣∣a ∣∣=∣∣a ∣∣=1∣∣b ∣∣=∣∣Ub ∣∣=∣∣U∣∣∣∣b ∣∣=∣∣b ∣∣=1
a ′ ⃗ , b ′ ⃗ \vec{a^{'}},\vec{b^{'}} a ,b 的内积(正交变换前后的内积相等):
a ′ ⃗ T ∗ b ′ ⃗ = ( U ∗ a ⃗ ) T ( U ∗ b ⃗ ) = a ⃗ T U T U b ⃗ = a ⃗ T b ⃗ \vec{a^{'}}^T*\vec{b^{'}}=(U*\vec{a})^{T}(U*\vec{b})=\vec{a}^{T}U^{T}U\vec{b}=\vec{a}^{T}\vec{b} a Tb =(Ua )T(Ub )=a TUTUb =a Tb
a ′ ⃗ , b ′ ⃗ \vec{a^{'}},\vec{b^{'}} a ,b 的夹角 θ ′ \theta^{'} θ(由上面的公式可得 θ = θ ′ \theta=\theta^{'} θ=θ):
c o s θ = a ⃗ T ∗ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ c o s θ ′ = a ′ ⃗ T ∗ b ′ ⃗ ∣ a ′ ⃗ ∣ ∣ b ′ ⃗ ∣ cos\theta=\frac{\vec{a}^T*\vec{b}}{|\vec{a}||\vec{b}|} \qquad cos\theta^{'}=\frac{\vec{a^{'}}^T*\vec{b^{'}}}{|\vec{a^{'}}||\vec{b^{'}}|} cosθ=a ∣∣b a Tb cosθ=a ∣∣b a Tb
因此,正交变换的性质可用下图来表示:

正交变换的两个重要性质:

  • 正交变换不改变向量的模。
  • 正交变换不改变向量的夹角。

如果向量 a ⃗ , b ⃗ \vec{a},\vec{b} a ,b 基向量,那么正交变换后的结果如下:

向量空间的是它的一个特殊的子集,基的元素称为基向量。向量空间中任意一个元素,都可以唯一地表示成基向量的线性组合。基向量之间是线性无关的

例子:考虑所有坐标 (a,b)的向量空间R,这里的ab都是实数。则非常自然和简单的基就是向量 e 1 = ( 1 , 0 ) e_1= (1,0) e1=(1,0) e 2 = ( 0 , 1 ) e_2=(0,1) e2=(0,1):假设v= (a,b)是R中的向量,则 v = a ( 1 , 0 ) + b ( 0 , 1 ) v=a(1,0)+b(0,1) v=a(1,0)+b(0,1)。而任何两个线性无关向量如 (1,1)和(−1,2),也形成R的一个基。

上图可以得到重要结论:基向量正交变换后的结果仍是基向量 。基向量是表示向量最简洁的方法,向量在基向量的投影就是所在基向量的坐标,我们通过这种思想去理解特征值分解和推导SVD分解。

为什么要正交变换?

正交变换图形上最直观的作用是:一巴掌把歪七扭八的图形打正,如下:

图形立正的同时,不改变其大小与形状,表达式也随之“标准化”【规范型系数只有1,0,-1】, x i x j x_ix_j xixj杂项群魔退散,平方项真身显现。

例题:求椭圆 2 x 2 + 4 x y + 5 y 2 = 1 2x^2+4xy+5y^2=1 2x2+4xy+5y2=1的面积

上式改写成矩阵形式: X T [ 2 2 2 5 ] X = 1 X^T\begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix}X=1 XT[2225]X=1

①求特征值和特征向量
∣ λ E − A ∣ = 0 ⇒ λ 1 = 6 , λ 2 = 1 ( λ i E − A ) α ⇒ α 1 = ( 1 , 2 ) T , α 2 = ( − 2 , 1 ) T |\lambda{E}-A|=0\Rightarrow\lambda_1=6,\lambda_2=1\\ (\lambda_i{E}-A)\alpha\Rightarrow\alpha_1=(1,2)^T,\alpha_2=(-2,1)^T λEA=0λ1=6,λ2=1(λiEA)αα1=(1,2)T,α2=(2,1)T
②特征向量正交化(未正交需要施密特正交化)、单位化

单位化: α 1 ′ = α 1 ∣ α 1 ∣ , α 2 ′ = α 2 ∣ α 2 ∣ \alpha_{1}^{'}=\frac{\alpha_1}{|\alpha_1|},\alpha_{2}^{'}=\frac{\alpha_2}{|\alpha_2|} α1=α1α1,α2=α2α2;正交矩阵为: Q = ( a 1 ′ , a 2 ′ ) Q=(a_{1}^{'},a_{2}^{'}) Q=(a1,a2)

③化为标准型

f = X T A X f=X^TAX f=XTAX X = Q Y X=QY X=QY的作用下,化为 f = y T Q T A Q y = 6 y 1 2 + y 2 2 f=y^{T}Q^{T}AQy=6y_1^2+y_2^2 f=yTQTAQy=6y12+y22.

最后由面积公式 S = π a b S=\pi{a}b S=πab求得面积。

2.特征值分解的含义

对称方阵A的特征值分解为: A = U Σ U − 1 A=U\Sigma{U^{-1}} A=UΣU1,其中 U U U是正交矩阵, Σ \Sigma Σ是由方阵A得特征值构成得对角矩阵(奇异矩阵)。

为了可视化特征值分解,假设A是2×2的对称矩阵, U = ( u 1 , u 2 ) , Σ = ( λ 1 , λ 2 ) U=(u_1,u_2),\Sigma=(\lambda_1,\lambda_2) U=(u1,u2),Σ=(λ1,λ2),则将上式展开为:
A u 1 = λ 1 u 1 A u 2 = λ 2 u 2 Au_1=\lambda_1u_1 \qquad Au_2=\lambda_2u_2 Au1=λ1u1Au2=λ2u2

由上图可知,矩阵A没有旋转特征向量,它只是对特征向量进行了拉伸或缩短(取决于特征值的大小),因此,对称矩阵对其特征向量(基向量)的变换仍然是基向量(单位化) 。

**特征向量和特征值的几何意义:**若向量经过矩阵变换后保持方向不变,只是进行长度上的伸缩,那么该向量是矩阵的特征向量,伸缩倍数是特征值。

3.SVD分解推导

我们考虑了当基向量是对称矩阵的特征向量时,矩阵变换后仍是基向量,但是,我们在实际项目中遇到的大都是行和列不相等的矩阵,如统计每个学生的科目乘积,行数为学生个数,列数为科目数,这种形成的矩阵很难是方阵,因此SVD分解是更普遍的矩阵分解方法 。

回顾一下正交变换的思想:基向量正交变换后的结果仍是基向量 。

用正交变换的思想来推导SVD分解:

假设矩阵 A M × N A_{M\times{N}} AM×N,秩为 K K K R a n k ( A ) = k Rank(A)=k Rank(A)=k。存在一组正交基 V V V
V = ( v 1 , v 2 , … , v k ) V=(v_1,v_2,\dots,v_k) V=(v1,v2,,vk)
矩阵对其变换后仍是正交基,记为 U U U
U = ( A v 1 , A v 2 , … , A v k ) U=(Av_1,Av_2,\dots,Av_k) U=(Av1,Av2,,Avk)
由正交基定义,得: ( A v i ) T ( A v j ) = 0 (Av_i)^T(Av_j)=0 (Avi)T(Avj)=0,将其展开有:
v i T A T A v j = 0 w h e n    v i    i s    t h e    e i g e n v e c t o r    o f    A T A : ( A T A ) v i = λ v i t h e    f o r m u l a    a b o v e    c o n v e r t    t o : λ v i T v j = 0 v_{i}^{T}A^TAv_j=0\\ when\;v_i\;is\;the\;eigenvector\;of\;A^TA:(A^TA)v_i=\lambda{v_i}\\ the\;formula\;above\;convert\;to:\lambda{v_{i}^T}v_j=0 viTATAvj=0whenviistheeigenvectorofATA:(ATA)vi=λvitheformulaaboveconvertto:λviTvj=0
假设成立。

正交向量的模:
∣ ∣ A v i ∣ ∣ 2 = ( A v i ) T ( A v i ) ⇒    v i T A T A v i ⇒    λ i v i T v i = λ i ∴ ∣ ∣ A v i ∣ ∣ = λ i ||Av_i||^2=(Av_i)^T(Av_i)\Rightarrow\;v_{i}^{T}A^TAv_i\Rightarrow\;\lambda_{i}v_{i}^{T}v_i=\lambda_i\\ \therefore||Av_i||=\sqrt{\lambda_i} ∣∣Avi2=(Avi)T(Avi)viTATAviλiviTvi=λi∣∣Avi∣∣=λi
单位化正交向量,得:
u i = A v i ∣ ∣ A v i ∣ ∣ = 1 λ i A v i ∴    A v i = λ i ∗ u i u_i=\frac{Av_i}{||Av_i||}=\frac{1}{\sqrt{\lambda_i}}Av_i\\ \therefore\;Av_i=\sqrt{\lambda_i}*u_i ui=∣∣Avi∣∣Avi=λi 1AviAvi=λi ui
结论:当基向量是 A T A A^TA ATA的特征向量时,矩阵A转换后的向量也是基向量 。

用矩阵表示上式: A V = U Σ AV=U\Sigma AV=UΣ

其中 V = ( v 1 , v 2 , … , v k ) , Σ = [ σ 1 σ 2 ⋱ σ k ] , U = ( u 1 , u 2 , … , u k ) , σ i = λ i V=(v_1,v_2,\dots,v_k),\Sigma=\begin{bmatrix}\sigma_1&&&&\\&\sigma_2\\&&\ddots\\&&&\sigma_k\end{bmatrix},U=(u_1,u_2,\dots,u_k),\sigma_i=\sqrt{\lambda_i} V=(v1,v2,,vk),Σ= σ1σ2σk ,U=(u1,u2,,uk),σi=λi .

矩阵 V N × K , U M × K , Σ M × K V_{N\times{K}},U_{M\times{K}},\Sigma_{M\times{K}} VN×K,UM×K,ΣM×K需要扩展成方阵:

将正交基 U = ( u 1 , u 2 , … , u k ) U=(u_1,u_2,\dots,u_k) U=(u1,u2,,uk)扩展成 ( u 1 , u 2 , … , u n ) R n (u_1,u_2,\dots,u_n)R^{n} (u1,u2,,un)Rn空间的正交基,即方阵 U N × N U_{N\times{N}} UN×N.

将正交基 V = ( v 1 , v 2 , … , v k ) V=(v_1,v_2,\dots,v_k) V=(v1,v2,,vk)扩展成 ( v 1 , v 2 , … , v n ) R n (v_1,v_2,\dots,v_n)R^{n} (v1,v2,,vn)Rn空间的正交基,即方阵 V N × N V_{N\times{N}} VN×N,其中 ( v k + 1 , v k + 2 , … , v n ) (v_{k+1},v_{k+2},\dots,v_n) (vk+1,vk+2,,vn)是矩阵A的零空间,即: A v i = 0 , i > k Av_i=0,i>k Avi=0,i>k,对应特征值 σ i = 0 \sigma_i=0 σi=0.

因此矩阵表示的式子转换为向量形式:
A V = U Σ ⇒ A ( v i , v 2 … , v k ∣ v k + 1 , v k + 2 , … , v n ) = ( u i , u 2 … , u k ∣ u k + 1 , u k + 2 , … , u n ) [ σ 1 σ 2 ⋱ σ k 0 ⋱ 0 ] AV=U\Sigma\Rightarrow\\ A(v_i,v_2\dots,v_k|v_{k+1},v_{k+2},\dots,v_n)=(u_i,u_2\dots,u_k|u_{k+1},u_{k+2},\dots,u_n) \begin{bmatrix} \sigma_1&&&&&&\\&\sigma_2&&&&&\\&&\ddots&&&&\\&&&\sigma_k&&&\\&&&&0&&\\&&&&&\ddots&\\&&&&&&0 \end{bmatrix} AV=UΣA(vi,v2,vkvk+1,vk+2,,vn)=(ui,u2,ukuk+1,uk+2,,un) σ1σ2σk00
两式右乘 V T V^T VT,可得矩阵的奇异值分解:
A = U Σ V T = ( u i , u 2 … , u k ∣ u k + 1 , u k + 2 , … , u n ) [ σ 1 σ 2 ⋱ σ k 0 ⋱ 0 ] [ v 1 T ⋮ v k T v k + 1 T ⋮ v n T ] = ( u i , u 2 … , u k ) [ σ 1 σ 2 ⋱ σ k ] [ v 1 T ⋮ v k T ] 令: X = ( u i , u 2 … , u k ) [ σ 1 σ 2 ⋱ σ k ] = ( σ 1 u 1 , σ 2 u 2 , … , σ k u k ) Y = [ v 1 T ⋮ v k T ] 则: A = X Y A=U\Sigma{V^T}\\ =(u_i,u_2\dots,u_k|u_{k+1},u_{k+2},\dots,u_n) \begin{bmatrix} \sigma_1&&&&&&\\&\sigma_2&&&&&\\&&\ddots&&&&\\&&&\sigma_k&&&\\&&&&0&&\\&&&&&\ddots&\\&&&&&&0 \end{bmatrix} \begin{bmatrix} v_1^T\\ \vdots\\v_k^T\\v_{k+1}^T\\ \vdots\\v_n^T \end{bmatrix}\\ =(u_i,u_2\dots,u_k) \begin{bmatrix} \sigma_1&&&\\&\sigma_2&&\\&&\ddots&\\&&&\sigma_k \end{bmatrix} \begin{bmatrix} v_1^T\\ \vdots\\v_k^T \end{bmatrix}\\ 令:X=(u_i,u_2\dots,u_k) \begin{bmatrix} \sigma_1&&&\\&\sigma_2&&\\&&\ddots&\\&&&\sigma_k \end{bmatrix}=(\sigma_1u_1,\sigma_2u_2,\dots,\sigma_ku_k)\\ Y=\begin{bmatrix} v_1^T\\ \vdots\\v_k^T \end{bmatrix}\\ 则:A=XY A=UΣVT=(ui,u2,ukuk+1,uk+2,,un) σ1σ2σk00 v1TvkTvk+1TvnT =(ui,u2,uk) σ1σ2σk v1TvkT 令:X=(ui,u2,uk) σ1σ2σk =(σ1u1,σ2u2,,σkuk)Y= v1TvkT 则:A=XY
因为X和Y分别是列满秩和行满秩,所以上式是A的满秩分解。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值