树的重心与树的直径

也许更好的阅读体验

树的重心

树的重心的定义
找到这样一个节点,使以其作为根节点时,最大的子树所含节点数最少

解决方法很简单,随便扯一个节点作为根节点,然后算一个点时考虑完所有儿子后再考虑一下父亲作为子树的答案即可

两种打法

int dfs (int x,int fa,int m)//m为树的节点数
{
	son[x]=1,ms[x]=0;//ms max_num_of_son
	int tans=2000;
	for (int e=head[x];e;e=nxt[e]){
		if (to[e]==fa)	continue;
		int t=dfs(to[e],x,m);
		if (ms[tans]>ms[t])	tans=t;
		son[x]+=son[to[e]];
		ms[x]=max(ms[x],son[to[e]]);
	}
	ms[x]=max(ms[x],m-son[x]);
	if (ms[tans]>ms[x])	tans=x;
	return tans;
}

int ans;
void dfs (int x,int fa,int m)
{
	son[x]=1,ms[x]=0;
	for (int e=head[x];e;e=nxt[e]){
		if (to[e]==fa)	continue;
		dfs(to[e],x,m);
		son[x]+=son[to[e]];
		ms[x]=max(ms[x],son[to[e]]);
	}
	ms[x]=max(ms[x],m-son[x]);
	if (ms[ans]>ms[x])	ans=x;
}

树的直径

求树中最长的一条路径

树的直径有个性质

任意一个点,另找一个点到这个点距离最大,那么另外的这个点一定是直径的两个端点中的某个点
这条性质还是蛮好用的,可以优化一些在树上的递推或者 D P DP DP

求法1

考虑一个点作为直径拐弯的点
记下最大路径和次大路径
比较所有节点的两者之和即可

实现的话只需存下最大路径,然后比较当前路径加上最大路径即可
即看看当前路径是否是次大路径或者更大的路径

void dfs(int x,int fa) 
{
    f[x]=0;
    for (int e=head[x];e;e=nxt[e]){
    	if (to[e]==fa)	continue;
    	dfs(to[e],x);
    	ans=max(ans,f[x]+f[to[e]]+w[e]);
    	f[x]=max(f[x],f[to[e]]+w[e]);
    }
}

求法2

两边 d f s dfs dfs或者 b f s bfs bfs
利用的是上面说的那条性质
先随便以一个点作为根节点,然后找到距离它最远的一个节点
于是我们就确定了直径上一个端点了
然后我们再从这个端点找到距离它最远的一个节点
这肯定就是另外一个端点了
这样的方法有个好处,就是可以方便的找出直径上有哪些点

实现和说的一样,两遍 d f s dfs dfs

int lt,rt;
void dfs (int x,int &k)
{
	if (dis[x]>dis[k])	k=x;
	for (int e=head[x];e;e=nxt[e]){
		if (to[e]==fa[x])	continue;
		fa[to[e]]=x;
		dis[to[e]]=dis[x]+w[e];
		dfs(to[e],k);
	}
}

dis[1]=0;
dfs(1,lt);
fa[lt]=dis[lt]=0;
dfs(lt,rt);

//标记直径
is[lt]=true;
while (rt!=lt)	is[rt]=true,rt=fa[rt];
//上面的写法是为了形象的说明,其实可以不计lt,因为lt的fa为0
while (rt)	is[rt]=true,rt=fa[rt];

如有哪里讲得不是很明白或是有错误,欢迎指正
如您喜欢的话不妨点个赞收藏一下吧

### 树的重心定义 树的重心是指在一棵中找到的一个特殊节点,该节点满足其所有的子大小都不超过整棵总节点数的一半。换句话说,当移除这个节点后,剩下的所有连通分量中的最大节点数量是最小化的。 在实际计算过程中,通常会利用深度优先搜索 (DFS) 来遍历整个并记录每个节点的子大小和权重。具体来说,对于每一个节点 \( \text{now} \),它的权重被定义为其最大的子大小或者剩余部分(即整棵减去当前子的部分)。最终选取具有最小权重的那个节点作为树的重心[^3]。 ### 实现方法 以下是基于上述描述的一种实现方式: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 7; int head[MAXN], tot, n, Min, ans; struct Edge { int to, next; }E[MAXN << 1]; void add_edge(int u, int v){ E[++tot].to = v; E[tot].next = head[u]; head[u] = tot; } int size[MAXN], weight[MAXN]; void DFS(int now, int fa){ size[now] = 1; weight[now] = 0; for(int i = head[now]; i; i = E[i].next){ int to = E[i].to; if(to != fa){ DFS(to, now); size[now] += size[to]; weight[now] = max(weight[now], size[to]); } } weight[now] = max(weight[now], n - size[now]); if(weight[now] < Min){ Min = weight[now]; ans = now; } } ``` 此代码片段展示了如何构建边表以及执行一次完整的DFS过程来寻找树的重心。 ### 应用场景 树的重心广泛应用于各种优化问题之中,比如网络设计、资源分配等领域。例如,在分布式系统里合理安排服务器位置可以减少通信延迟;又或者是物流配送中心选址等问题都可以转化为求解图上某类特定形态下的“最优”点位——而这往往对应于原图所表示拓扑结构内的某个或某些“核心”部位之一即是所谓的“重心”。 另外值得注意的是,虽然这里讨论的重点放在无向简单连通图形式化表达出来的静态情形下关于单棵独立存在的自由上的情况,但在更复杂动态环境当中也可能存在类似的扩展版本概念用于解决相应挑战性的新课题之上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值