[POJ 2888]Magic Bracelet[Polya(Burnside) 置换 矩阵]

也许刚好的阅读体验
D e s c r i p t i o n \mathcal{Description} Description

大意:给一条长度为 n n n的项链,有 m m m种颜色,另有 k k k条限制,每条限制为不允许 x , y x,y x,y颜色连在一起。要求有多少种本质不同的染色方式,本质不同的两种染色方式必须旋转不能互相得到。
输入方式:
第一行 t , t, t,表示t组数据
接下来 t t t组数据:
每组数据第一行为 n , m , k n,m,k n,m,k
接下来 k k k行,每行两个数 x , y x,y x,y表示不允许 x , y x,y x,y颜色连在一起。
答案对9973取模
( 1 ≤ n ≤ 1 0 9 , g c d ( n , 9973 ) = 1 ) , m ( 1 ≤ m ≤ 10 ) , k ( 1 ≤ k ≤ m ( m − 1 ) / 2 ) (1 ≤ n ≤ 10^9, gcd(n, 9973) = 1), m (1 ≤ m ≤ 10), k (1 ≤ k ≤ m(m − 1) /2) (1n109,gcd(n,9973)=1),m(1m10),k(1km(m1)/2)
S o l u t i o n \mathcal{Solution} Solution

本篇题解假设大家都会没有 k k k条限制的版本

由于染色有限制,所以 p o l y a polya polya定理就不好用了
b u r n s i d e burnside burnside定理解决(发现大家标题都打得polya,于是也这么打标题了)

首先枚举不同的置换,即枚举循环长度,这一块和用 p o l y a polya polya定理有点像
由于 n n n很大,要用 φ \varphi φ来优化
一个置换中,循环的元素的所有颜色必须相同,所以我们要计算有多少个循环,这些循环有多少种染色方法

计算染色方法
考虑在该置换内一个循环一个循环的染色,我们可以看做从不同颜色节点走向另一节点
用邻接矩阵 f [ i ] [ j ] f[i][j] f[i][j]表示从 i i i能否走向 j j j
除去那 k k k条限制,所有其他的 i , j i,j i,j , f [ i ] [ j ] = 1 f[i][j]=1 f[i][j]=1,即在染为第 i i i种颜色后是可以染为第 j j j种颜色的

这时候想到邻接矩阵的妙用,用矩乘计算 n n n次之后得到的 f [ i ] [ j ] f[i][j] f[i][j]的意义发生改变
f [ i ] [ j ] f[i][j] f[i][j]表示从 i i i出发,走 n n n步,最后结束在 j j j有多少种走法。
由于是一个走一圈,所以 i i i出发应在 i i i结束,答案贡献为 f [ i ] [ i ] f[i][i] f[i][i]
这样就可以计算长度为 n n n的循环的染色方法了:求出原矩阵的 n n n次方后的矩阵后 ∑ i = 1 m f [ i ] [ i ] \sum_{i=1}^mf[i][i] i=1mf[i][i]

注意取模
代码

/*******************************
Author:Morning_Glory
LANG:C++
Created Time:2019年07月04日 星期四 14时25分13秒
*******************************/
#include <cstdio>
#include <fstream>
#include <cstring>
using namespace std;
const int maxn = 25;
const int mod = 9973;
//{{{cin 读入优化
struct IO{
	template<typename T>
	IO & operator>>(T&res){
		res=0;
		bool flag=false;
		char ch;
		while((ch=getchar())>'9'||ch<'0')	 flag|=ch=='-';
		while(ch>='0'&&ch<='9') res=(res<<1)+(res<<3)+(ch^'0'),ch=getchar();
		if (flag)	 res=~res+1;
		return *this;
	}
}cin;
//}}}
int t,n,m,k,x,y,ni,ans;
//{{{Matrix
struct Matrix{
	int rec[maxn][maxn];
	Matrix(){	memset(rec,0,sizeof(rec));}
	Matrix operator = (const Matrix &y){
		for (int i=1;i<=m;++i)
			for (int j=1;j<=m;++j)
				rec[i][j]=y.rec[i][j];
		return *this;
	}
	friend Matrix operator * (const Matrix &a,const Matrix &b){
		Matrix t;
		for (int i=1;i<=m;++i)
			for (int j=1;j<=m;++j)
				for (int k=1;k<=m;++k)
					t.rec[i][j]=(t.rec[i][j]+a.rec[i][k]*b.rec[k][j])%mod;
		return t;
	}
	Matrix operator ^ (int b){
		Matrix s,a;
		a=*this;
		for (int i=1;i<=m;++i)	s.rec[i][i]=1;
		for (;b;b>>=1,a=a*a)
			if (b&1)	s=s*a;
		return s;
	}
}a,b;
//}}}Martix
//{{{get_phi
int get_phi (int x)
{
	int res=x;
	for (int i=2;i*i<=x;++i)
		if (x%i==0){
			res=res/i*(i-1);
			while (x%i==0)	x/=i;
		}
	if (x>1)	res=res/x*(x-1);
	return res%mod;//此处要取模
}
//}}}
//{{{ksm
int ksm (int a,int b)
{
	int s=1;
	a%=mod;
	for (;b;a=1ll*a*a%mod,b>>=1)
		if (b&1)	s=1ll*s*a%mod;
	return s;
}
//}}}
//{{{calc
int calc (int x)
{
	b=a^x;
	int res=0;
	for (int i=1;i<=m;++i)	res=(res+b.rec[i][i])%mod;
	return res;
}
//}}}
int main()
{
	cin>>t;
	while (t--){
		cin>>n>>m>>k;
		ans=0,ni=ksm(n,mod-2);//ni n的逆元
		for (int i=1;i<=m;++i)
			for (int j=1;j<=m;++j)
				a.rec[i][j]=1;
		while (k--){
			cin>>x>>y;
			a.rec[x][y]=a.rec[y][x]=0;
		}
		for (int i=1;i*i<=n;++i)
			if (n%i==0){
				ans=(ans+get_phi(i)*calc(n/i)%mod)%mod;
				if (i*i!=n)	ans=(ans+get_phi(n/i)*calc(i)%mod)%mod;
			}
		ans=ans*ni%mod;
		printf("%d\n",ans);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值