问题描述
给一张
n
n
n个点,
m
m
m条边的简单无向图,求解有多少个三元环
三元环:一个三元组
(
i
,
j
,
k
)
\left(i,j,k\right)
(i,j,k)表示三个点,要求存在边
(
i
,
j
)
,
(
i
,
k
)
,
(
j
,
k
)
\left(i,j\right),\left(i,k\right),\left(j,k\right)
(i,j),(i,k),(j,k)
解决方法
定义点的大小
我们先把每个点 i i i定义一个双关键字 ( d e g i , i d i ) \left(deg_i,id_i\right) (degi,idi),其中 d e g i , i d i deg_i,id_i degi,idi分别表示 i i i点的度数与编号,这样每个点就有了严格的大小关系
转为有向图
然后我们将这张无向图转变为有向图:把所有的边 ( i , j ) \left(i,j\right) (i,j)改为由关键字大的点向关键字小的点连边,这样我们就可以得到一张有向无环图
找环
找环分为三步
- 枚举一个点 i i i,将所有出边所连接的点标记为 i i i
- 枚举一个由 i i i连出的点 j j j
- 枚举所有由 j j j连出的点 k k k,若 k k k有标记了且该标记为 i i i,就表明找到了一个三元环
这样做就保证了每个环只会被
i
i
i所找到
时间复杂度,最高为
O
(
m
m
)
O\left(m\sqrt{m}\right)
O(mm)
如有哪里讲得不是很明白或是有错误,欢迎指正
如您喜欢的话不妨点个赞收藏一下吧