红黑树是一种自平衡二叉查找树,它的操作有着良好的最坏情况运行时间,并且在实践中是高效的: 它可以在O(log n)时间内做查找,插入和删除,这里的n是树中元素的数目。
红黑树应用:
1.linux内核中,进程的虚拟地址区间由红黑树组织管理
2.nginx中,超时时间由红黑树组织管理
3.C++ STL中,C++中set,multiset,map,multimap集合模板类都是在STL红黑树的基础之上实现的
......
下面看红黑树在gcc中C++标准库的实现,只关注结点的插入、删除及相应的树平衡操作
I.红黑树的结点
/* gcc-4.4.5/libstdc++-v3/include/bits/stl_tree.h */
/* /usr/include/c++/4.4.4/bits/stl_tree.h */
85 enum _Rb_tree_color { _S_red = false, _S_black = true };
86
87 struct _Rb_tree_node_base
88 {
89 typedef _Rb_tree_node_base* _Base_ptr;
90 typedef const _Rb_tree_node_base* _Const_Base_ptr;
91
92 _Rb_tree_color _M_color;
93 _Base_ptr _M_parent;
94 _Base_ptr _M_left;
95 _Base_ptr _M_right;
96
97 static _Base_ptr
98 _S_minimum(_Base_ptr __x)
99 {
100 while (__x->_M_left != 0) __x = __x->_M_left;
101 return __x;
102 }
103
104 static _Const_Base_ptr
105 _S_minimum(_Const_Base_ptr __x)
106 {
107 while (__x->_M_left != 0) __x = __x->_M_left;
108 return __x;
109 }
110
111 static _Base_ptr
112 _S_maximum(_Base_ptr __x)
113 {
114 while (__x->_M_right != 0) __x = __x->_M_right;
115 return __x;
116 }
117
118 static _Const_Base_ptr
119 _S_maximum(_Const_Base_ptr __x)
120 {
121 while (__x->_M_right != 0) __x = __x->_M_right;
122 return __x;
123 }
124 };
II.结点的插入
结点的插入主要分以下两个步骤:
1.我们首先以二叉查找树的方法增加节点并标记它为红色。(如果设为黑色,就会导致根到叶子的路径上有一条路上,多一个额外的黑节点,这个是很难调整的。但是设为红色节点后,可能会导致出现两个连续红色节点的冲突,那么可以通过颜色调换(color flips)和树旋转来调整。)
2.出现连红时做插入平衡操作
i.插入平衡操作(消除连红)
__x:需要做插入平衡操作的结点
__p:__x的父节点
__xpp:__x的祖父节点
__y:__x的叔父节点
出现连红(__x,__p为红色,__xpp为黑色)时会有以下三种情况(只看__p是__xpp左儿子的情况)
1.叔父节点是红色,则不能通过翻转/颜色调换使树重新平衡,只能做颜色调换并向祖父节点递归做平衡操作
2.叔父节点是黑色,__x是__p的左儿子,通过祖父节点右翻转和颜色调换可使树平衡
3.叔父节点是黑色,__x是__p的右儿子,可以通过__p左翻转和颜色调换变成第二种情况,做相应的操作进而使树平衡
ii.结点插入实现
/* gcc-4.4.5/libstdc++-v3/src/tree.cc */
160 void
161 _Rb_tree_insert_and_rebalance(const bool __insert_left,
162 _Rb_tree_node_base* __x,
163 _Rb_tree_node_base* __p,
164 _Rb_tree_node_bas