Spark编程实验五:Spark Structured Streaming编程

目录

一、目的与要求

二、实验内容

三、实验步骤

1、Syslog介绍

2、通过Socket传送Syslog到Spark

3、Syslog日志拆分为DateFrame

4、对Syslog进行查询

四、结果分析与实验体会


一、目的与要求

1、通过实验掌握Structured Streaming的基本编程方法;
2、掌握日志分析的常规操作,包括拆分日志方法和分析场景。

二、实验内容

1、通过Socket传送Syslog到Spark

        日志分析是一个大数据分析中较为常见的场景。在Unix类操作系统里,Syslog广泛被应用于系统或者应用的日志记录中。Syslog通常被记录在本地文件内,也可以被发送给远程Syslog服务器。Syslog日志内一般包括产生日志的时间、主机名、程序模块、进程名、进程ID、严重性和日志内容。

        日志一般会通过Kafka等有容错保障的源发送,本实验为了简化,直接将Syslog通过Socket源发送。新建一个终端,执行如下命令:

$ tail -n+1 -f /var/log/syslog | nc -lk 9988

        “tail -n+1 -f /var/log/syslog”表示从第一行开始打印文件syslog的内容。“-f”表示如果文件有增加则持续输出最新的内容。然后,通过管道把文件内容发送到nc程序(nc程序可以进一步把数据发送给Spark)。

        如果/var/log/syslog内的内容增长速度较慢,可以再新开一个终端(计作“手动发送日志终端”),手动在终端输入如下内容来增加日志信息到/var/log/syslog内:

$ logger ‘I am a test error log message.’

2、对Syslog进行查询

由Spark接收nc程序发送过来的日志信息,然后完成以下任务:

(1)统计CRON这个进程每小时生成的日志数,并以时间顺序排列,水印设置为1分钟。
(2)统计每小时的每个进程或者服务分别产生的日志总数,水印设置为1分钟。
(3)输出所有日志内容带error的日志。

三、实验步骤

1、Syslog介绍

        分析日志是一个大数据分析中较为常见的场景。在Unix类操作系统里,Syslog广泛被应用于系统或者应用的日志记录中。Syslog通常被记录在本地文件内,也可以被发送给远程Syslog服务器。Syslog日志内一般包括产生日志的时间、主机名、程序模块、进程名、进程ID、严重性和日志内容。

2、通过Socket传送Syslog到Spark

        日志一般会通过kafka等有容错保障的源发送,本实验为了简化,直接将syslog通过Socket源发送。新开一个终端,命令为“tail终端”,输入

tail -n+1 -f /var/log/syslog | nc -lk 9988

        tail命令加-n+1代表从第一行开始打印文件内容。-f代表如果文件有增加则持续输出最新的内容。通过管道发送到nc命令起的在本地9988上的服务上。
        如果/var/log/syslog内的内容增长速度较慢,可以再新开一个终端,命名为“手动发送log终端”,手动在终端输入

logger ‘I am a test error log message.’

来增加日志信息到/var/log/syslog内。

3、Syslog日志拆分为DateFrame

        Syslog每行的数据类似以下:

Nov 24 13:17:01 spark CRON[18455]: (root) CMD (cd / && run-parts --report /etc/cron.hourly)

        最前面为时间,接着是主机名,进程名,可选的进程ID,冒号后是日志内容。在Spark内,可以使用正则表达式对syslog进行拆分成结构化字段,以下是示例代码:

 # 定义一个偏应用函数,从固定的pattern获取日志内匹配的字段
    fields = partial(
        regexp_extract, str="value", pattern="^(\w{3}\s*\d{1,2} \d{2}:\d{2}:\d{2}) (.*?) (.*?)\[*\d*\]*: (.*)$"
    )

    words = lines.select(
        to_timestamp(format_string('2019 %s', fields(idx=1)), 'yy MMM d H:m:s').alias("timestamp"),
        fields(idx=2).alias("hostname"),
        fields(idx=3).alias("tag"),
        fields(idx=4).alias("content"),
    )

        to_timestamp(format_string('2018 %s', fields(idx=1)), 'yy MMM d H:m:s').alias("timestamp"),这句是对Syslog格式的一个修正,因为系统默认的Syslog日期是没有年的字段,所以使用format_string函数强制把拆分出来的第一个字段前面加上2019年,再根据to_timestamp格式转换成timestamp字段。在接下来的查询应当以这个timestamp作为事件时间。

4、对Syslog进行查询

由Spark接收nc程序发送过来的日志信息,然后完成以下任务。

(1)统计CRON这个进程每小时生成的日志数,并以时间顺序排列,水印设置为1分钟。

        在新开的终端内输入 vi spark_exercise_testsyslog1.py ,贴入如下代码并运行。运行之前需要关闭“tail终端”内的tail命令并重新运行tail命令,否则多次运行测试可能导致没有新数据生成。

#!/usr/bin/env python3

from functools import partial

from pyspark.sql import SparkSession
from pyspark.sql.functions import *


if __name__ == "__main__":
    spark = SparkSession \
        .builder \
        .appName("StructuredSyslog") \
        .getOrCreate()

    lines = spark \
        .readStream \
        .format("socket") \
        .option("host", "localhost") \
        .option("port", 9988) \
        .load()

    # Nov 24 13:17:01 spark CRON[18455]: (root) CMD (   cd / && run-parts --report /etc/cron.hourly)
    # 定义一个偏应用函数,从固定的pattern获取日志内匹配的字段
    fields = partial(
        regexp_extract, str="value", pattern="^(\w{3}\s*\d{1,2} \d{2}:\d{2}:\d{2}) (.*?) (.*?)\[*\d*\]*: (.*)$"
    )

    words = lines.select(
        to_timestamp(format_string('2019 %s', fields(idx=1)), 'yy MMM d H:m:s').alias("timestamp"),
        fields(idx=2).alias("hostname"),
        fields(idx=3).alias("tag"),
        fields(idx=4).alias("content"),
    )

    # (1).  统计CRON这个进程每小时生成的日志数,并以时间顺序排列,水印设置为1分钟。
    windowedCounts1 = words \
        .filter("tag = 'CRON'") \
        .withWatermark("timestamp", "1 minutes") \
        .groupBy(window('timestamp', "1 hour")) \
        .count() \
        .sort(asc('window'))

    # 开始运行查询并在控制台输出
    query = windowedCounts1 \
        .writeStream \
        .outputMode("complete") \
        .format("console") \
        .option('truncate', 'false')\
        .trigger(processingTime="3 seconds") \
        .start()

    query.awaitTermination()

(2)统计每小时的每个进程或者服务分别产生的日志总数,水印设置为1分钟。

        在新开的终端内输入 vi spark_exercise_testsyslog2.py ,贴入如下代码并运行。运行之前需要关闭“tail终端”内的tail命令并重新运行tail命令,否则多次运行测试可能导致没有新数据生成。

#!/usr/bin/env python3

from functools import partial

from pyspark.sql import SparkSession
from pyspark.sql.functions import *


if __name__ == "__main__":
    spark = SparkSession \
        .builder \
        .appName("StructuredSyslog") \
        .getOrCreate()

    lines = spark \
        .readStream \
        .format("socket") \
        .option("host", "localhost") \
        .option("port", 9988) \
        .load()

    # Nov 24 13:17:01 spark CRON[18455]: (root) CMD (   cd / && run-parts --report /etc/cron.hourly)
    # 定义一个偏应用函数,从固定的pattern获取日志内匹配的字段
    fields = partial(
        regexp_extract, str="value", pattern="^(\w{3}\s*\d{1,2} \d{2}:\d{2}:\d{2}) (.*?) (.*?)\[*\d*\]*: (.*)$"
    )

    words = lines.select(
        to_timestamp(format_string('2019 %s', fields(idx=1)), 'yy MMM d H:m:s').alias("timestamp"),
        fields(idx=2).alias("hostname"),
        fields(idx=3).alias("tag"),
        fields(idx=4).alias("content"),
    )

    # (2).  统计每小时的每个进程或者服务分别产生的日志总数,水印设置为1分钟。
    windowedCounts2 = words \
        .withWatermark("timestamp", "1 minutes") \
        .groupBy('tag', window('timestamp', "1 hour")) \
        .count() \
        .sort(asc('window'))

    # 开始运行查询并在控制台输出
    query = windowedCounts2 \
        .writeStream \
        .outputMode("complete") \
        .format("console") \
        .option('truncate', 'false')\
        .trigger(processingTime="3 seconds") \
        .start()

    query.awaitTermination()

(3)输出所有日志内容带error的日志。

        在新开的终端内输入 vi spark_exercise_testsyslog3.py ,贴入如下代码并运行。运行之前需要关闭“tail终端”内的tail命令并重新运行tail命令,否则多次运行测试可能导致没有新数据生成。

#!/usr/bin/env python3

from functools import partial

from pyspark.sql import SparkSession
from pyspark.sql.functions import *


if __name__ == "__main__":
    spark = SparkSession \
        .builder \
        .appName("StructuredSyslog") \
        .getOrCreate()

    lines = spark \
        .readStream \
        .format("socket") \
        .option("host", "localhost") \
        .option("port", 9988) \
        .load()

    # Nov 24 13:17:01 spark CRON[18455]: (root) CMD (   cd / && run-parts --report /etc/cron.hourly)
    # 定义一个偏应用函数,从固定的pattern获取日志内匹配的字段
    fields = partial(
        regexp_extract, str="value", pattern="^(\w{3}\s*\d{1,2} \d{2}:\d{2}:\d{2}) (.*?) (.*?)\[*\d*\]*: (.*)$"
    )

    words = lines.select(
        to_timestamp(format_string('2019 %s', fields(idx=1)), 'yy MMM d H:m:s').alias("timestamp"),
        fields(idx=2).alias("hostname"),
        fields(idx=3).alias("tag"),
        fields(idx=4).alias("content"),
    )

    # (3).  输出所有日志内容带error的日志。
    windowedCounts3 = words \
        .filter("content like '%error%'")

    # 开始运行查询并在控制台输出
    query = windowedCounts3 \
        .writeStream \
        .outputMode("update") \
        .format("console") \
        .option('truncate', 'false')\
        .trigger(processingTime="3 seconds") \
        .start()

    query.awaitTermination()

四、结果分析与实验体会

        Spark Structured Streaming 是 Spark 提供的用于实时流处理的 API,它提供了一种统一的编程模型,使得批处理和流处理可以共享相同的代码逻辑,让开发者更容易地实现复杂的实时流处理任务。通过对 Structured Streaming 的实验,有以下体会:

  1. 简单易用: Structured Streaming 提供了高级抽象的 DataFrame 和 Dataset API,使得流处理变得类似于静态数据处理,降低了学习成本和编程复杂度。

  2. 容错性强大: Structured Streaming 内置了端到端的 Exactly-Once 语义,能够保证在发生故障时数据处理的准确性,给开发者提供了更可靠的数据处理保障。

  3. 灵活性和扩展性: Structured Streaming 支持丰富的数据源和数据接收器,可以方便地与其他数据存储和处理系统集成,同时也支持自定义数据源和输出操作,满足各种不同场景的需求。

  4. 优化性能: Structured Streaming 内置了优化器和调度器,能够根据任务的特性自动优化执行计划,提升处理性能,同时还可以通过调整配置参数和优化代码来进一步提高性能。

  5. 监控和调试: Structured Streaming 提供了丰富的监控指标和集成的调试工具,帮助开发者实时监控作业运行状态、诊断问题,并进行性能调优。

        通过实验和实践,更深入地理解 Structured Streaming 的特性和工作原理,掌握实时流处理的开发技巧和最佳实践,为构建稳健可靠的实时流处理应用打下坚实基础。

        Syslog 是一种常用的日志标准,它定义了一个网络协议,用于在计算机系统和网络设备之间传递事件消息和警报。通过对 Syslog 的实验,有以下体会:

  1. 灵活性: Syslog 可以用于收集各种类型的事件和日志信息,包括系统日志、安全事件、应用程序消息等等,具有很高的灵活性和可扩展性。

  2. 可靠性: Syslog 提供了可靠的传输和存储机制,确保事件和日志信息不会丢失或损坏,在故障恢复和安全审计方面非常重要。

  3. 标准化: Syslog 是一种通用的日志标准,已经被广泛采用和支持,可以与各种操作系统、应用程序、设备和服务集成,提供了统一的数据格式和接口。

  4. 安全性: Syslog 支持基于 TLS 和 SSL 的加密和身份认证机制,确保传输的信息不会被窃听或篡改,保证了日志传输的安全性。

  5. 可视化: 通过将 Syslog 收集到集中式的日志管理系统中,可以方便地进行搜索、分析和可视化,使日志信息变得更加易于理解和利用。

        通过实验和实践,更深入地了解 Syslog 的工作原理和应用场景,学会如何配置和使用 Syslog,掌握日志收集、存储、分析和可视化的技巧和最佳实践,为构建高效、可靠、安全的日志管理系统打下坚实基础。

### 配置 Structured Streaming 编程实践环境的方法 为了有效配置 Structured Streaming编程实践环境,需准备必要的软件和技术栈。这通常涉及安装 Apache Spark 并设置开发工具来支持 Structured Streaming 应用程序的编写。 #### 安装 Java 或 Scala 开发包 (JDK/SDK) Structured Streaming 是基于 Apache Spark 构建的一部分,而 Spark 主要由 Scala 编写并依赖于 JVM 运行时环境。因此,在大多数情况下,需要先安装 JDK 来提供运行时支持[^1]。 #### 下载与安装 Apache Spark 访问官方下载页面获取最新版本的 Spark 发行版,并解压到本地文件系统中的合适位置。确保选择包含 Hadoop 版本的预编译二进制包以便简化部署过程[^2]。 #### 设置环境变量 为了让命令行能够识别 `spark-submit` 及其他相关指令,建议将 SPARK_HOME 添加至系统的 PATH 环境变量中。此外,还需定义 PYSPARK_PYTHON 指向 Python 解释器路径以启用 PySpark 支持[^3]。 ```bash export SPARK_HOME=/path/to/spark-directory export PATH=$PATH:$SPARK_HOME/bin export PYSPARK_PYTHON=python3 ``` #### 使用 IDE 创建项目结构 对于希望利用集成开发环境(IDE)辅助编码工作的开发者来说,可以考虑采用 IntelliJ IDEA 或者 PyCharm Professional Edition。这些工具有助于更高效地管理依赖项以及调试代码逻辑。 #### 测试 Structured Streaming 功能 完成上述准备工作之后,可以通过启动简单的 WordCount 类型的应用实例来进行验证测试: ```python from pyspark.sql import SparkSession from pyspark.sql.functions import explode, split if __name__ == "__main__": spark = SparkSession.builder \ .appName("StructuredNetworkWordCount") \ .getOrCreate() lines = spark.readStream.format('socket').option('host', 'localhost')\ .option('port', 9999).load() words = lines.select(explode(split(lines.value, " ")).alias("word")) wordCounts = words.groupBy("word").count() query = wordCounts.writeStream.outputMode('complete').format('console').start() query.awaitTermination() ``` 此段脚本展示了如何创建一个基本的数据流处理管道,它会监听指定端口上的输入文本并通过控制台输出单词频率统计结果[^4]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Francek Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值