Spark环境搭建和使用方法

目录

一、安装Spark

(一)基础环境

(二)安装Python3版本

(三)下载安装Spark

(四)配置相关文件

二、在pyspark中运行代码

(一)pyspark命令

(二)启动pyspark 

三、开发Spark独立应用程序

(一)编写程序

(二)通过spark-submit运行程序 


一、安装Spark

(一)基础环境

安装Spark之前需要安装Linux系统、Java环境(Java8或JDK1.8以上版本)和Hadoop环境。

可参考本专栏前面的博客:
大数据软件基础(3) —— 在VMware上安装Linux集群-CSDN博客
大数据存储技术(1)—— Hadoop简介及安装配置-CSDN博客

(二)安装Python3版本

1、查看当前环境下的Python版本

[root@bigdata zhc]# python --version

 Python 2.7.5 版本已经不能满足当前编程环境需求,所以要安装较高版本的Python3,但Python 2.7.5 版本不能卸载。

2、连网下载Python3

[root@bigdata zhc]# yum install -y python3

 如图所示,Python3安装完成。

 安装的版本为Python 3.6.8。

(三)下载安装Spark

1、Spark安装包下载地址https://spark.apache.org/

进入下载页面后,点击主页的“Download”按钮进入下载页面,下载页面中提供了几个下载选项,主要是Spark release及Package type的选择,如下图所示。

我这里下的是Spark 2.4.0版本,没有此版本的,也可以下载Spark 3.2.4或更高版本的。

2、解压安装包spark-2.4.0-bin-without-hadoop.tgz至路径 /usr/local

[root@bigdata uploads]# tar -zxvf spark-2.4.0-bin-without-hadoop.tgz -C /usr/local

更改文件目录名:

[root@bigdata local]# mv spark-2.4.0-bin-without-hadoop/ spark 

(四)配置相关文件

1、配置Spark的classpath

先切换到 /usr/local/spark/conf 目录下,复制spark-env.sh.template重命名为spark-env.sh。

[root@bigdata local]# cd /usr/local/spark/conf
[root@bigdata conf]# cp spark-env.sh.template spark-env.sh
[root@bigdata conf]# ll
总用量 44
-rw-r--r-- 1 zhc  zhc   996 10月 29 2018 docker.properties.template
-rw-r--r-- 1 zhc  zhc  1105 10月 29 2018 fairscheduler.xml.template
-rw-r--r-- 1 zhc  zhc  2025 10月 29 2018 log4j.properties.template
-rw-r--r-- 1 zhc  zhc  7801 10月 29 2018 metrics.properties.template
-rw-r--r-- 1 zhc  zhc   865 10月 29 2018 slaves.template
-rw-r--r-- 1 zhc  zhc  1292 10月 29 2018 spark-defaults.conf.template
-rwxr-xr-x 1 root root 4221 12月 13 20:23 spark-env.sh
-rwxr-xr-x 1 zhc  zhc  4221 10月 29 2018 spark-env.sh.template
[root@bigdata conf]# vi spark-env.sh

将如下内容加到spark-env.sh文件的第一行。

export SPARK_DIST_CLASSPATH=$(/usr/local/servers/hadoop/bin/hadoop  classpath)

实现了Spark和Hadoop的交互。

2、配置 /etc/profile 文件

将如下内容添加到 /etc/profile 文件最后,并使其生效。

[root@bigdata conf]# vi /etc/profile
[root@bigdata conf]# source /etc/profile
export SPARK_HOME=/usr/local/spark
export PYTHONPATH=$SPARK_HOME/python:$SPARK_HOME/python/lib/py4j-0.10.7-src.zip:$PYTHONPATH
export PYSPARK_PYTHON=python3
export PATH=$HADOOP_HOME/bin:$SPARK_HOME/bin:$PATH

如下图所示。 

至此,Spark环境就安装配置好了。

输入实例SparkPi验证Spark环境。为了从大量的输出信息中快速找到我们想要的自行结果,可以使用grep命令进行过滤。命令如下:

[root@bigdata spark]# run-example SparkPi 2>&1 |grep "Pi is"

 

二、在pyspark中运行代码

(一)pyspark命令

pyspark命令及其常用的参数如下:

pyspark --master <master-url>

Spark的运行模式取决于传递给SparkContext的Master URL的值。Master URL可以是以下任一种形式:

        (1)local 使用一个Worker线程本地化运行SPARK(完全不并行)
        (2)local[*] 使用逻辑CPU个数数量的线程来本地化运行Spark
        (3)local[K] 使用K个Worker线程本地化运行Spark(理想情况下,K应该根据运行机器的CPU核数设定)
        (4)spark://HOST:PORT 连接到指定的Spark standalone master。默认端口是7077
        (5)yarn-client 以客户端模式连接YARN集群。集群的位置可以在HADOOP_CONF_DIR环境变量中找到
        (6)yarn-cluster 以集群模式连接YARN集群。集群的位置可以在HADOOP_CONF_DIR环境变量中找到
        (7)mesos://HOST:PORT 连接到指定的Mesos集群。默认接口是5050

在Spark中采用本地模式启动pyspark的命令主要包含以下参数:
--master:这个参数表示当前的pyspark要连接到哪个master,如果是local[*],就是使用本地模式启动pyspark,其中,中括号内的星号表示需要使用几个CPU核心(core),也就是启动几个线程模拟Spark集群
--jars: 这个参数用于把相关的JAR包添加到CLASSPATH中;如果有多个jar包,可以使用逗号分隔符连接它们。

比如,要采用本地模式,在4个CPU核心上运行pyspark:

$ cd /usr/local/spark
$ ./bin/pyspark --master local[4]

或者,可以在CLASSPATH中添加code.jar,命令如下:

$ cd /usr/local/spark
$ ./bin/pyspark --master local[4] --jars code.jar 

 可以执行“pyspark --help”命令,获取完整的选项列表,具体如下:

$ cd /usr/local/spark
$ ./bin/pyspark --help

(二)启动pyspark 

执行如下命令启动pyspark(默认是local模式):

[root@bigdata zhc]# cd /usr/local/spark
[root@bigdata spark]# pyspark

可以在里面输入scala代码进行调试:

>>> 8*2+5
21

 可以使用命令“exit()”退出pyspark:

>>> exit()

三、开发Spark独立应用程序

(一)编写程序

# /home/zhc/mycode/WordCount.py
from pyspark import SparkConf, SparkContext
conf = SparkConf().setMaster("local").setAppName("My App")
sc = SparkContext(conf = conf)
logFile = "file:///usr/local/spark/README.md"
logData = sc.textFile(logFile, 2).cache()
numAs = logData.filter(lambda line: 'a' in line).count()
numBs = logData.filter(lambda line: 'b' in line).count()
print('Lines with a: %s, Lines with b: %s' % (numAs, numBs))

对于这段Python代码,可以直接使用如下命令执行:

[root@bigdata zhc]# cd /home/zhc/mycode
[root@bigdata mycode]# vi WordCount.py
[root@bigdata mycode]# ll
总用量 8
-rw-r--r-- 1 root root 430 12月 14 12:54 WordCount.py
-rw-r--r-- 1 root root  56 12月  9 18:55 word.txt
[root@bigdata mycode]# python3 WordCount.py

执行该命令以后,可以得到如下结果:

(二)通过spark-submit运行程序 

可以通过spark-submit提交应用程序,该命令的格式如下:

spark-submit  

        --master <master-url>  

        --deploy-mode <deploy-mode>   #部署模式  

        ... #其他参数  

        <application-file>  #Python代码文件  

        [application-arguments]  #传递给主类的主方法的参数

可以执行“spark-submit  --help”命令,获取完整的选项列表,具体如下:

$ cd /usr/local/spark
$ ./bin/spark-submit --help

以通过 spark-submit 提交到 Spark 中运行,命令如下:
注意要在 /home/zhc/mycode/ 路径下执行spark-submit,否则要使用绝对路径。

[root@bigdata mycode]# spark-submit WordCount.py
[root@bigdata zhc]# spark-submit /home/zhc/mycode/WordCount.py    #绝对路径

运行结果如图所示: 

此时我们发现有大量的INFO信息,这些信息属于干扰信息,对于我们有用的只有“Lines with a: 62, Lines with b: 30”这一行。为了避免其他多余信息对运行结果的干扰,可以修改log4j的日志信息显示级别,具体方法如下:

[root@bigdata spark]# cd /usr/local/spark/conf
[root@bigdata conf]# ll
总用量 44
-rw-r--r-- 1 zhc  zhc   996 10月 29 2018 docker.properties.template
-rw-r--r-- 1 zhc  zhc  1105 10月 29 2018 fairscheduler.xml.template
-rw-r--r-- 1 zhc  zhc  2025 10月 29 2018 log4j.properties.template
-rw-r--r-- 1 zhc  zhc  7801 10月 29 2018 metrics.properties.template
-rw-r--r-- 1 zhc  zhc   865 10月 29 2018 slaves.template
-rw-r--r-- 1 zhc  zhc  1292 10月 29 2018 spark-defaults.conf.template
-rwxr-xr-x 1 root root 4300 12月 13 20:33 spark-env.sh
-rwxr-xr-x 1 zhc  zhc  4221 10月 29 2018 spark-env.sh.template
[root@bigdata conf]# cp log4j.properties.template log4j.properties
[root@bigdata conf]# vi log4j.properties

打开 log4j.properties 文件后,可以发现包含如下一行信息:

log4j.rootCategory=INFO, console

将其修改为: 

log4j.rootCategory=ERROR, console

再次回到 /home/zhc/mycode/ 路径下执行spark-submit,就会发现没有INFO信息了。

[root@bigdata mycode]# spark-submit WordCount.py

### 如何在钉钉中添加或集成DeepSeek应用 为了在钉钉中成功添加或集成DeepSeek应用,需要遵循特定的方法来确保两者之间的无缝协作。通常情况下,在企业环境中部署这样的应用程序涉及到几个方面的工作。 对于希望利用DeepSeek作为内部工具的企业来说,可以通过创建自定义的小程序或者机器人的方式将其接入到钉钉平台内[^2]。具体操作如下: #### 创建钉钉小程序 如果打算通过开发定制化的小程序形式加入,则开发者应该熟悉阿里巴巴提供的文档支持资源,按照官方指导完成注册、配置以及发布流程。这可能涉及API接口调用权限申请等步骤。 #### 配置钉钉机器人 另一种更简便的选择是设置Webhook类型的聊天机器人,这样可以直接发送消息给指定群组成员而无需额外安装软件包。只需要获取相应的URL地址并根据实际需求编写脚本处理逻辑即可实现基本功能交互。当用户向该机器人提问时,后台服务端会接收请求并将查询转发至运行中的DeepSeek实例进行解析回应;之后再把得到的结果反馈回去显示出来供所有人查看。 需要注意的是,无论是哪种方式都建议先测试环境下的效果确认无误后再正式投入使用,并且保持对最新版本更新的关注以便及时调整优化现有方案。 ```bash # 下次启动DeepSeek需输入ollama list查看已经下载的模型 $ ollama list # 运行选定模型 $ ollama run +模型名字 ```
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Francek Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值