【作者主页】Francek Chen
【专栏介绍】 ⌈ ⌈ ⌈人工智能与大模型应用 ⌋ ⌋ ⌋ 人工智能(AI)通过算法模拟人类智能,利用机器学习、深度学习等技术驱动医疗、金融等领域的智能化。大模型是千亿参数的深度神经网络(如ChatGPT),经海量数据训练后能完成文本生成、图像创作等复杂任务,显著提升效率,但面临算力消耗、数据偏见等挑战。当前正加速与教育、科研融合,未来需平衡技术创新与伦理风险,推动可持续发展。
文章目录
前言
在数字化时代,大模型强势崛起,成为科技领域焦点,正以惊人速度重塑生活方式、工作模式及社会运行逻辑。它凭借强大数据处理、深度学习算法、高度泛化性能及卓越问题解决能力,为各行业带来变革与机遇。其中,通义千问凭借出色自然语言理解能力,在智能交互领域表现出色,能精准解析语言深层含义,以智能高效方式响应需求,从智能客服到内容创作持续赋能,推动人机交互迈向新高度。
本文将深入探讨蓝耘MaaS(Model as a Service)平台与深度学习的紧密联系,详细介绍该平台的特点与优势,阐述其与阿里通义千问Qwen2.5-72B-Instruct模型的融合亮点及应用拓展实例,提供调参实战指南。
一、Qwen2.5-72B-Instruct简介
Qwen2.5,是阿里云研发的通义千问系列开源大模型。该系列提供Base和Instruct等多版本、多规模的开源模型,从而满足不同的计算需求,API已对该系列模型进行全面支持。
Qwen2.5-VL通过采用动态FPS采样将动态分辨率扩展到时间维度,使模型能够以各种采样率理解视频。因此,我们在时间维度上使用ID和绝对时间对齐更新mRoPE,使模型能够学习时间序列和速度,并最终获得精确定位特定时刻的能力。Qwen2.5-VL模型架构如图1所示。
Qwen2.5-72B-Instruct是基于大规模预训练技术构建的先进语言模型,在自然语言处理领域展现出显著优势。该模型依托海量文本数据进行训练,具备强大的语言表征与语义理解能力,能够精准解析自然语言中的复杂语义结构、上下文关联以及隐含意图,展现出高精度的语义感知水平。
在智能交互场景中,Qwen2.5-72B-Instruct凭借其深度语义理解和逻辑推理能力,可依据用户输入生成高度相关、逻辑连贯且符合语境的回应,实现高效的人机对话。此外,在内容创作任务里,它能够依据预设的创作目标和风格要求,生成富有创意与逻辑性的文本内容,为内容生产提供有力支持。
该模型在多个自然语言处理任务上均取得了优异性能,为智能交互、内容生成等领域的实际应用提供了坚实的技术基础,有力推动了相关领域的技术创新与发展。
二、蓝耘元生代平台简介
蓝耘科技作为行业内的关键力量,自2004年创立以来,成功实现了从传统IT系统集成业务向GPU算力云服务业务的华丽转身。在过往的发展轨迹中,蓝耘科技凭借着对市场趋势的敏锐嗅觉,精准洞察行业发展的每一个细微动向。在算力资源的管理调度、性能优化以及运维运营等核心环节,形成了一套高度成熟且具备可复制性的工程化能力体系。其服务触角广泛延伸,深入高校科研、人工智能、自动驾驶、工业设计等众多前沿领域,为各行业的创新发展提供了坚实的算力支撑。蓝耘元生代平台主页如图3所示。
蓝耘元生代智算平台基于Kubernetes构建,提供高性能GPU集群,支持动态资源调配与分布式计算框架(如PyTorch、TensorFlow、DeepSpeed等),并具备自动化调度和故障恢复能力,可显著提升训练效率。其关键特性包括:灵活资源配置、分布式训练优化、实时监控界面。蓝耘元生代智算云架构如图4所示。
三、蓝耘MaaS平台使用Qwen2.5-72B-Instruct模型
蓝耘MaaS平台,作为模型即服务(Model as a Service)的先行者,以创新的云计算平台模式,将训练有素的AI模型以标准化服务形式呈现给用户。其核心优势在于丰富的预训练模型库,涵盖自然语言处理、计算机视觉、语音识别等多个领域,用户无需从零开始训练模型,大大节省时间和资源。
(一)注册蓝耘智算平台账号
点击注册链接:https://cloud.lanyun.net//#/registerPage?promoterCode=0131
输入手机号获取验证码,输入邮箱(这里邮箱会收到信息,要激活邮箱),设置密码,点击注册。如图5所示。
新用户福利:注册后可领取免费试用时长(20元代金券,可直接当余额来使用)。
若已经注册过帐号,点击下方“已有账号,立即登录”即可。
(二)进入蓝耘MaaS模型广场
登录后进入首页,点击“MaaS平台”,如图6所示。
接着进入MaaS平台的模型广场。在这里,用户可以看到多种来自不同供应商的模型,如DeepSeek、通义等。页面详细列出了模型名称、类型(如文本生成)、上下文长度等信息,还提供了API示例、查看详情和立即体验等操作选项。图7中展示的是蓝耘元生代MaaS平台的模型广场页面。
然后,找到Qwen2.5-72B-Instruct大模型,点击“立即体验”。如图8所示。
图9中展示的是蓝耘元生代MaaS平台的对话界面。左侧是功能导航栏,包含模型广场、文本模型等选项。对话框上方是模型选择区域,点击可展开选择如DeepSeek-R1、QwQ-32B等多种模型。下方是对话输入区,用户可输入问题,有“深度思考”“联网搜索”等功能按钮,输入框显示token限制。这里选择的是“Qwen2.5-72B-Instruct”模型。
(三)使用Qwen2.5-72B-Instruct模型生成文案
在输入框中输入提示词,然后回车,或者用鼠标点击提示词输入框右侧的箭头按钮,向Qwen2.5-72B-Instruct发起提问。Qwen2.5-72B-Instruct给出的回答如图10、图11所示,需要注意的是,大模型属于概率模型,每次生成的回答内容可能不完全相同。提示词如下:
请为我规划一次为期一周的连云港自由行;
(1)第1步:列出必去的景点,如江苏海洋大学、花果山、连岛景区、云台山、桃花涧风景区、海州古城;
(2)第2步:根据景点位置安排每日行程,确保交通便利;
(3)第3步:推荐几家当地的特色餐厅,包括早餐、午餐和晚餐;
(4)第4步:提供一家性价比高的酒店住宿建议,并考虑其位置是否便于游览。
此次对话输出1118tokens,总耗时16.8s,共消耗1251tokens。该对话token消耗的数量=输入token数+输出token数。
(四)使用Qwen2.5-72B-Instruct模型生成代码
生成有关机器学习聚类的代码,提示词如下:
帮我生成一段关于机器学习聚类的代码,要求使用scikit-learn库。
输出结果如图12所示。
此次对话输出640tokens,总耗时11.4s,共消耗661tokens。该对话token消耗的数量=输入token数+输出token数。
输出代码如下:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# 生成模拟数据
n_samples = 300
n_features = 2
n_centers = 4
random_state = 42
X, _ = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_centers, random_state=random_state)
# 数据预处理
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# KMeans聚类
kmeans = KMeans(n_clusters=n_centers, random_state=random_state)
kmeans.fit(X_scaled)
labels = kmeans.labels_
centroids = kmeans.cluster_centers_
# 可视化结果
plt.figure(figsize=(10, 6))
plt.scatter(X_scaled[:, 0], X_scaled[:, 1], c=labels, s=50, cmap='viridis')
plt.scatter(centroids[:, 0], centroids[:, 1], s=200, c='red', marker='X', label='Centroids')
plt.title('KMeans Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()
plt.show()
四、蓝耘平台免费送超千万Token
只需注册蓝耘平台账号,新用户即可轻松获赠1000万Token!如此丰厚的Token免费资源包,具体使用细则详见图13。
本次使用通义Qwen2.5-72B-Instruct模型的token消耗数为3458,如图14所示。
关于Token的计算规则,我们为您详细说明:中文方面,1个汉字约计为1.2 Token;英文方面,1个英文单词则约计为1 Token。此外,使用API调用时,会额外消耗5%的系统Token。
以下是我们平台各项操作的Token消耗情况,供您参考:
操作类型 | 内容长度 | 消耗Token | 备注说明 |
---|---|---|---|
文本分类 | 50字中文内容 | 60 Token | 此费用已包含系统开销 |
知识库查询 | 200字问题描述 | 250 Token | 包含向量检索费用 |
智能对话 | 10轮对话交流 | 约800 Token | 对话上下文越长,消耗Token越多 |
五、未来展望
随着科技的不断进步,大模型技术在自然语言处理等多个领域展现出了巨大的潜力,Qwen2.5-72B-Instruct等先进模型将持续进化,为各行业带来更智能、高效的解决方案。蓝耘MaaS平台作为连接用户与前沿技术的桥梁,也将迎来更广阔的发展前景。
未来,蓝耘MaaS平台有望进一步丰富预训练模型库,引入更多像Qwen2.5-72B-Instruct这样性能卓越的模型,满足不同用户的多样化需求。在技术层面,平台将不断优化算力资源管理调度,提升分布式训练效率,降低用户使用成本。同时,加强与模型研发方的合作,共同探索模型在更多实际场景中的应用拓展,为用户提供更贴合业务需求的定制化服务。
此外,随着大模型应用的深入,数据安全和隐私保护将成为重要议题。蓝耘MaaS平台将加大在这方面的投入,建立完善的安全防护体系,保障用户数据的安全与合规使用,成为推动大模型技术普及和应用的重要力量,助力各行业在数字化浪潮中实现跨越式发展。
小结
小结
本文围绕蓝耘MaaS平台与Qwen2.5-72B-Instruct模型展开深入探讨。先介绍了Qwen2.5-72B-Instruct模型,其依托海量数据训练,在自然语言处理领域表现卓越,能精准解析语义并高效完成人机对话与内容创作。接着阐述蓝耘元生代平台,它基于Kubernetes构建,具备多种关键特性。随后说明在蓝耘MaaS平台使用该模型的具体流程,还展示了生成文案与代码的实例。整体展现了两者融合的优势与广阔应用前景。蓝耘平台提供的千万级免费Token资源,更将助推开发者生态建设,为“云端训练-边缘推理”生态链发展注入新动能。
欢迎 点赞👍 | 收藏⭐ | 评论✍ | 关注🤗