高中数学解析几何绝活二:齐次化与二次曲线三角形弦的双K模型

双K模型

    为引出齐次化的方法,我们先看一类高中解析几何中十分常见的题型,双K模型。

例1

    已知椭圆\frac{x^{2}}{8}+\frac{y^{2}}{2}=1,过P(-2,1)引射线PA、PB与椭圆交于A、B,已知K_{PA}*K_{PB}=\lambda,求证AB过定点,并求出定点坐标。

    像这样,自二次曲线上一点P引射线再交于二次曲线于两点A、B,形成一个二次曲线上的三角形,并给定PA、PB斜率关系求证弦AB性质的题,我们将其称为双K题。除k_{1}*k_{2}之外,k_{1}+k_{2}及它们的组合(k_{1}-k_{2}\frac{1}{k_{1}}+\frac{1}{k_{2}}等)也可作为双K模型题的条件。

    传统解法如下:

设AB:y=kx+m      ①

联立椭圆与AB得:(4k^{2}+1)x^{2}+8kmx+4m^{2}-8=0

由韦达定理得:\left\{\begin{matrix} x_{1+}x_{2}=\frac{-8km}{4k^{2}+1}\\ x_{1}x_{2}=\frac{4m^{2}-8}{4k^{2}+1}\end{matrix}\right.     ②

K_{PA}*K_{PB}=\lambda,得

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值