高中数学解析几何绝活二:齐次化与二次曲线三角形弦的双K模型

双K模型

    为引出齐次化的方法,我们先看一类高中解析几何中十分常见的题型,双K模型。

例1

    已知椭圆\frac{x^{2}}{8}+\frac{y^{2}}{2}=1,过P(-2,1)引射线PA、PB与椭圆交于A、B,已知K_{PA}*K_{PB}=\lambda,求证AB过定点,并求出定点坐标。

    像这样,自二次曲线上一点P引射线再交于二次曲线于两点A、B,形成一个二次曲线上的三角形,并给定PA、PB斜率关系求证弦AB性质的题,我们将其称为双K题。除k_{1}*k_{2}之外,k_{1}+k_{2}及它们的组合(k_{1}-k_{2}\frac{1}{k_{1}}+\frac{1}{k_{2}}等)也可作为双K模型题的条件。

    传统解法如下:

设AB:y=kx+m      ①

联立椭圆与AB得:(4k^{2}+1)x^{2}+8kmx+4m^{2}-8=0

由韦达定理得:\left\{\begin{matrix} x_{1+}x_{2}=\frac{-8km}{4k^{2}+1}\\ x_{1}x_{2}=\frac{4m^{2}-8}{4k^{2}+1}\end{matrix}\right.     ②

K_{PA}*K_{PB}=\lambda,得\frac{x_{1}y_{2}+x_{2}y_{1}+2(y_{1}+y_{2})-(x_{1}+x_{2})-4}{x_{1}x_{2}+2(x_{1}+x_{2})+4}=\lambda  ③

联立①②③得8km+4m-16k^{2}-4-16k=\lambda (4m^{2}-16km+16k^{2}-4)  (\bigstar)

对(\bigstar)式进行因式分解求出km关系并锁定定点。

    虽然思路很简单,但其中的计算十分繁琐,容易出错,且这类题目最后得到的因式分解的式子往往难以看出。那么,如果有这么一种方法,可以像韦达定理一样轻易地得出k_{1}*k_{2}k_{1}+k_{2}的表达式并参与计算的话,这类题目是不是就可以更轻易的解决呢?

齐次化

    对于齐次化这种方法,我们期望它可以实现两个目的:简化计算提供思路

推导过程:

一个想法:

    在例1的解题过程中,致使计算麻烦的根本原因在于斜率K1和K2的表达式的繁琐:

k_{1}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}

k_{2}=\frac{y_{2}-y_{0}}{x_{2}-x_{0}}

其中(x0,y0)为P的坐标。

    P点的坐标使得k1和k2二者的四则运算更加复杂,因为这涉及到多项式乘法运算。如果有这样一种方法,使得k=\frac{y{}'}{x{}'}而非\frac{y-y_{0}}{x-x_{0}},那么运算繁琐的问题将得到解决。

坐标轴的平移:

    易知如果我们将坐标轴的原点平移至P点,在新的坐标轴X{}'-P-Y{}'下运算即可达成我们的目的。

    仍以例1为例,平移坐标原点至P,有\left\{\begin{matrix} x{}'=x-x_{0}\\ y{}'=y-y_{0}\end{matrix}\right.\rightarrow \left\{\begin{matrix} x{}=x{}'+x_{0}\\ y{}=y{}'+y_{0}\end{matrix}\right.

    则新的坐标系下椭圆的方程为\frac{(x{}'-2)^{2}}{8}+\frac{(y{}'+1)^{2}}{2}=1\Rightarrow x{}'^{2}+4y{}'^{2}-4x{}'+8y{}'=0

    此时我们得到的椭圆方程x{}'^{2}+4y{}'^{2}-4x{}'+8y{}'=0已经没有了常数项。

齐次化联立:

    不妨设AB在新坐标轴下的方程为 mx{}'+ny'=1

    将这个式子乘入椭圆方程的一次项 x{}'^{2}+4y{}'^{2}+(-4x{}'+8y{}')(mx{}'+ny')=0

    这样既完成了联立,又将联立后的式子化成了齐次式。

    化简,并将等式两侧同时除去x^{2} 得到  (1-4m)+(4+8n)\frac{y'^{2}}{x'^{2}}+(8m-4n)\frac{y'}{x'}=0

    由“一个思路”:

    P点的坐标使得k1和k2二者的四则运算更加复杂,因为这涉及到多项式乘法运算。如果有这样一种方法,使得k=\frac{y{}'}{x{}'}而非\frac{y-y_{0}}{x-x_{0}},那么运算繁琐的问题将得到解决。

    (1-4m)+(4+8n)k^{2}+(8m-4n)k=0

    由韦达定理:\left\{\begin{matrix} k_{1}+k_{2}=\frac{4n-8m}{4+8n}\\ k_{1}k_{2}=\frac{1-4m}{4+8n}\end{matrix}\right. 不难得知,其中,k1、k2分别为PA、PB的斜率。

    由已知条件,k_{1}k_{2}=\frac{1-4m}{4+8n}=\lambda \Rightarrow \frac{4}{1-4\lambda }m+\frac{8\lambda }{1-4\lambda }n=1

    则在新坐标系下,AB恒过点Q'(\frac{4}{1-4\lambda },\frac{8\lambda }{1-4\lambda })

    平移回原坐标得Q(\frac{4}{1-4\lambda }-2,\frac{8\lambda }{1-4\lambda }+1)此即为答案。

    由此不难看出,若题干条件是k_{1}+k_{2}k_{1}-k_{2}\frac{1}{k_{1}}+\frac{1}{k_{2}}的值已知,我们也可以利用齐次化的技巧将其解决。

    至此,简化计算的目的达成。

例2

    学习了齐次化技巧之后,让我们来一道例题感受一下吧。

    已知椭圆C:\frac{x^{2}}{4}+\frac{y^{2}}{1}=1(a>b>0)下顶点为A,右顶点为B。直线L1过AB。有一不经过B的未知直线L2交C于P、Q,过点P作X轴垂线交L1于D,P关于D的对称点为E,若EBQ三点共线,求证L2过定点。

 

    分析:观察L2,发现L2是一条,而BPQ是二次曲线上的三角形,由齐次化模型,我们猜想BP和BQ的斜率有某种关系,从而使得L2过定点。(利用AP和AQ亦可,不过不能直接运用三点共线的条件,更加繁琐)

    设P(x_{0},y_{0})则E为(x_{0},x_{0}-y_{0}-2),由三点共线,KBQ=KBE,KBQ+KBP=KBE+KBP=1

    双K之和为1,只需将坐标轴平移至B点,重复上述齐次化过程即可求出L2恒过的顶点,这部分应用交给读者自行完成。

    通过这道例题,我们发现,从此这类二次曲线三角形的弦过定点问题,我们有了一个可能的思路:找双K是否有关系,至此提供思路的目的也达成了。

结语

    与上篇:极点极线(高中数学之极点极线的推导和应用-CSDN博客)技巧相同,齐次化的办法不能写在高考的考卷中,但简化计算、提前获取答案、开辟新思路的特点是相同的,希望读者朋友们读后能有所收获。

    高中解析几何大体有两种解题的路数,其一是联立,其二是不联立。我们大多数人学习并使用的往往是联立的方法,其中齐次化代表着一种糅合了平移等技巧的特殊的联立,而我写下的前一篇文章中的极点极线方法则代表着不联立的技巧。倘使能贯通联立与不联立,高中的解析几何无敌便指日可待。

  • 23
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值