高中数学解析几何绝活一:极点极线的推导和应用

预备知识:

一:调和分割

如图:eq?%5Cfrac%7B%5Cleft%20%7C%20PA%20%5Cright%20%7C%7D%7B%5Cleft%20%7C%20PB%20%5Cright%20%7C%7D%3D%20%5Cfrac%7B%5Cleft%20%7C%20QA%20%5Cright%20%7C%7D%7B%5Cleft%20%7C%20QB%20%5Cright%20%7C%7D%3D%20%5Cfrac%7B1%7D%7B3%7D,即称PQ调和分割PB,PAQB称为一个调和点列。

f07fb7c73d834169abe0aaf218bdcbab.png

二:定比点差法

如图,直线l交椭圆于AB两点,P为直线上椭圆外一点,若eq?%5Cfrac%7B%5Cleft%20%7C%20PA%20%5Cright%20%7C%7D%7B%5Cleft%20%7C%20PB%20%5Cright%20%7C%7D%3D%20%5Clambda

470f7f8cb1c8488186c431bb4e97fd35.png

则有:eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20y_%7BA%7D-y_%7BP%7D%3D%5Clambda%20%28y_%7BB%7D-y_%7BP%7D%29%5C%5C%20x_%7BA%7D-x_%7BP%7D%3D%5Clambda%20%28x_%7BB%7D-x_%7BP%7D%29%5Cend%7Bmatrix%7D%5Cright.%20%5CRightarrow%20%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%5Clambda%20y_%7BB%7D-y_%7BA%7D%3D%28%5Clambda%20-1%29y_%7BP%7D%5C%5C%20%5Clambda%20x_%7BB%7D-x_%7BA%7D%3D%28%5Clambda%20-1%29x_%7BP%7D%5Cend%7Bmatrix%7D%5Cright.%20%5Cbigstar 

由A、B在椭圆上,有:eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%5Cfrac%7Bx_%7BA%7D%5E%7B2%7D%7D%7Ba%5E%7B2%7D%7D+%5Cfrac%7By_%7BA%7D%5E%7B2%7D%7D%7Bb%5E%7B2%7D%7D%3D1%20%5C%5C%20%5Cfrac%7B%5Clambda%20%5E%7B2%7Dx_%7BB%7D%5E%7B2%7D%7D%7Ba%5E%7B2%7D%7D+%5Cfrac%7B%5Clambda%20%5E%7B2%7Dy_%7BB%7D%5E%7B2%7D%7D%20%7Bb%5E%7B2%7D%7D%3D%5Clambda%20%5E%7B2%7D%5Cend%7Bmatrix%7D%5Cright.

 二式相减并带入eq?%5Cbigstar式,得到:eq?%5Cfrac%7Bx_%7BP%7D%28%5Clambda%20x_%7BB%7D+x_%7BA%7D%29%7D%7Ba%5E%7B2%7D%7D+%5Cfrac%7By_%7BP%7D%28%5Clambda%20y_%7BB%7D+y_%7BA%7D%29%7D%7Bb%5E%7B2%7D%7D%3D%5Clambda%20+1

极点极线:

1.极点极线的几何定义:

    过点P的直线eq?l交二次曲线Ω(圆、椭圆、双曲线、抛物线)于A、B两点,若eq?l上存在一点Q,使得eq?%5Cfrac%7B%5Cleft%20%7C%20PA%20%5Cright%20%7C%7D%7B%5Cleft%20%7C%20PB%20%5Cright%20%7C%7D%3D%5Cfrac%7B%5Cleft%20%7CQA%20%5Cright%20%7C%7D%7B%5Cleft%20%7C%20QB%20%5Cright%20%7C%7D,则称点Q为P关于Ω的调和共轭点。当eq?l开始旋转,Q的轨迹将形成一条直线eq?l_%7B0%7D,则称eq?l_%7B0%7D为P关于Ω的极线,相应地,称P为eq?l_%7B0%7D关于Ω的极点。

    e21ba92c717c4bd39a3315120df027d6.png

注1:

    极点极线一一对应地成对存在。确定的点P必然对应唯一的极线L,确定的极线L必然对应唯一的极点P。

    极点是平面内的任意一点,可在二次曲线外,也可在二次曲线上。

2.极点极线的代数推导:

    极点极线的一一对应性质,告诉我们知道了平面内一点的坐标,必然可以求出此点关于二次曲线的极线方程,反之亦然。那么,这一一对应的性质是怎么来的?具体该怎么求极点极线?带着这两个问题,我们来研究极点极线的数学推导。

    由预备知识,我们只需对eq?%5Cfrac%7B%5Cleft%20%7C%20PA%20%5Cright%20%7C%7D%7B%5Cleft%20%7C%20PB%20%5Cright%20%7C%7D%3D%5Clambdaeq?%5Cfrac%7B%5Cleft%20%7C%20QA%20%5Cright%20%7C%7D%7B%5Cleft%20%7C%20QB%20%5Cright%20%7C%7D%20%3D%20%5Clambda用两次定比点差方法即可。

    过程中注意负号,具体过程如下:

    eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20y_%7BA%7D-y_%7BP%7D%3D%5Clambda%20%28y_%7BB%7D-y_%7BP%7D%29%5C%5C%20x_%7BA%7D-x_%7BP%7D%3D%5Clambda%20%28x_%7BB%7D-x_%7BP%7D%29%5Cend%7Bmatrix%7D%5Cright.%20%5CRightarrow%20%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%5Clambda%20y_%7BB%7D-y_%7BA%7D%3D%28%5Clambda%20-1%29y_%7BP%7D%5C%5C%20%5Clambda%20x_%7BB%7D-x_%7BA%7D%3D%28%5Clambda%20-1%29x_%7BP%7D%5Cend%7Bmatrix%7D%5Cright.  ①

    eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20y_%7BA%7D-y_%7BQ%7D%3D-%5Clambda%20%28y_%7BB%7D-y_%7BQ%7D%29%5C%5C%20x_%7BA%7D-x_%7BQ%7D%3D-%5Clambda%20%28x_%7BB%7D-x_%7BQ%7D%29%5Cend%7Bmatrix%7D%5Cright.%20%5CRightarrow%20%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%5Clambda%20y_%7BB%7D+y_%7BA%7D%3D%28%5Clambda%20+1%29y_%7BQ%7D%5C%5C%20%5Clambda%20x_%7BB%7D+x_%7BA%7D%3D%28%5Clambda%20+1%29x_%7BQ%7D%5Cend%7Bmatrix%7D%5Cright.  ②

    

由A、B在椭圆上,有:eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%5Cfrac%7Bx_%7BA%7D%5E%7B2%7D%7D%7Ba%5E%7B2%7D%7D+%5Cfrac%7By_%7BA%7D%5E%7B2%7D%7D%7Bb%5E%7B2%7D%7D%3D1%20%5C%5C%20%5Cfrac%7B%5Clambda%20%5E%7B2%7Dx_%7BB%7D%5E%7B2%7D%7D%7Ba%5E%7B2%7D%7D+%5Cfrac%7B%5Clambda%20%5E%7B2%7Dy_%7BB%7D%5E%7B2%7D%7D%20%7Bb%5E%7B2%7D%7D%3D%5Clambda%20%5E%7B2%7D%5Cend%7Bmatrix%7D%5Cright.

 二式相减并带入eq?%5Cbigstar式,得到:eq?%5Cfrac%7Bx_%7BP%7D%28%5Clambda%20x_%7BB%7D+x_%7BA%7D%29%7D%7Ba%5E%7B2%7D%7D+%5Cfrac%7By_%7BP%7D%28%5Clambda%20y_%7BB%7D+y_%7BA%7D%29%7D%7Bb%5E%7B2%7D%7D%3D%5Clambda%20+1  ③

 联立②③得eq?%5Cfrac%7Bx_%7BQ%7Dx_%7BP%7D%7D%7Ba%5E%7B2%7D%7D+%5Cfrac%7By_%7BQ%7Dy_%7BP%7D%7D%7Bb%5E%7B2%7D%7D%3D1%20%28%5Cast%29

    由此我们得到:如果我们已知P坐标eq?%5Cleft%20%28%20p%2Cq%20%5Cright%20%29,则Q点的轨迹是一条方程为eq?%5Cfrac%7Bpx%7D%7Ba%5E%7B2%7D%7D+%5Cfrac%7Bqy%7D%7Bb%5E%7B2%7D%7D%3D1的直线eq?l_%7B0%7D,由极点极线的几何定义,易知eq?l_%7B0%7D即为所求的P关于Ω的极线。 

    以上是以椭圆为例的推导,接下来给出一般二次曲线的极点极线公式推导:

    已知二次曲线Ω:eq?Ax%5E%7B2%7D+Bxy+Cy%5E%7B2%7D+Dx+Ey%3D1 

    eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20y_%7BA%7D-y_%7BP%7D%3D%5Clambda%20%28y_%7BB%7D-y_%7BP%7D%29%5C%5C%20x_%7BA%7D-x_%7BP%7D%3D%5Clambda%20%28x_%7BB%7D-x_%7BP%7D%29%5Cend%7Bmatrix%7D%5Cright.%20%5CRightarrow%20%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%5Clambda%20y_%7BB%7D-y_%7BA%7D%3D%28%5Clambda%20-1%29y_%7BP%7D%5C%5C%20%5Clambda%20x_%7BB%7D-x_%7BA%7D%3D%28%5Clambda%20-1%29x_%7BP%7D%5Cend%7Bmatrix%7D%5Cright.  ①

    eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20y_%7BA%7D-y_%7BQ%7D%3D-%5Clambda%20%28y_%7BB%7D-y_%7BQ%7D%29%5C%5C%20x_%7BA%7D-x_%7BQ%7D%3D-%5Clambda%20%28x_%7BB%7D-x_%7BQ%7D%29%5Cend%7Bmatrix%7D%5Cright.%20%5CRightarrow%20%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%5Clambda%20y_%7BB%7D+y_%7BA%7D%3D%28%5Clambda%20+1%29y_%7BQ%7D%5C%5C%20%5Clambda%20x_%7BB%7D+x_%7BA%7D%3D%28%5Clambda%20+1%29x_%7BQ%7D%5Cend%7Bmatrix%7D%5Cright.  ②

    eq?Ax_%7BA%7D%5E%7B2%7D+Bx_%7BA%7Dy_%7BA%7D+Cy_%7BA%7D%5E%7B2%7D+Dx_%7BA%7D+Ey_%7BA%7D%3D1

    eq?%5Clambda%5E%7B2%7D%20%28Ax_%7BB%7D%5E%7B2%7D+Bx_%7BB%7Dy_%7BB%7D+Cy_%7BB%7D%5E%7B2%7D+Dx_%7BB%7D+Ey_%7BB%7D%29%3D%5Clambda%20%5E%7B2%7D

    联立①②③④得式       eq?Ax_%7BP%7Dx_%7BQ%7D+%5Cfrac%7BB%7D%7B2%7D%28x_%7BQ%7Dy_%7BP%7D+x_%7BP%7Dy_%7BQ%7D%29+Cy_%7BP%7Dy_%7BQ%7D+%5Cfrac%7BD%7D%7B2%7D%28x_%7BP%7D+x_%7BQ%7D%29+%5Cfrac%7BE%7D%7B2%7D%28y_%7BP%7D+y_%7BQ%7D%29%3D1eq?%28%5Cast%20%7B%7D%27%29

综上所述,对于已知点Peq?%28p%2Cq%29,已知二次曲线Ωeq?Ax%5E%7B2%7D+Bxy+Cy%5E%7B2%7D+Dx+Ey%3D1,点P关于Ω所对的极线eq?l_%7B0%7D方程为eq?Apx+%5Cfrac%7BB%7D%7B2%7D%28qx+py%29+Cqy+%5Cfrac%7BD%7D%7B2%7D%28p+x%29+%5Cfrac%7BE%7D%7B2%7D%28q+y%29%3D1

注2:

    若极点在二次曲线上,则其对应极线为过该极点的二次曲线的切线。

3.极点极线的性质:

    极点极线具有很多良好的性质,事实上很多看起来“巧合”的定点定直线题目,背后都蕴含着极点极线的规律。 

    需要注意的是,由于极点极线规律往往不能直接使用,极点极线的思想对于高考生来说其实是“蒙”答案、开辟思路的方法,而非生搬硬套的“公式”。也正因此,关于极点极线的性质,高考生实则无须学会它们的推导和记忆,有个大概印象,在见到看似是极点极线思想的题目的时候能“蒙”出思路或是答案即可。

    极点极线的性质1:

    有二次曲线Ω,任意一点P,在点P关于Ω所对应的极线eq?l_%7B0%7D上任取一点Q,则Q关于Ω所对应的极线eq?l_%7B0%7D%5E%7B%27%7D必经过P。

    该性质可由极点极线的代数推导轻易导出。

    极点极线的性质2

    有二次曲线Ω,任意直线eq?l_%7B0%7D,在eq?l_%7B0%7D上任取一点P,过P作Ω两条切线交Ω于A、B,则A、B恒过eq?l_%7B0%7D所对的极点Q。

368364cc4f3b48e2849b36b0488c782a.png

    简单推导如下:

     由注2和性质1,在A所对应的极线PA上取一点P,则P所对应的极线必过A,同理P所对应的极线必过B,故AB即为P所对应的极线,在P所对应的极线上任取一点Q,则Q所对应极线必经过P。

    如上,由于笔者不打算引入调和点束等知识,且极点极线其它的性质解释过于复杂,故仅抛出两例。


4.极点极线思想的几道例题:

    例①:

    已知椭圆eq?%5Cfrac%7Bx%5E%7B2%7D%7D%7B8%7D+%5Cfrac%7By%5E%7B2%7D%7D%7B2%7D%3D1  ,过M(0,2)的直线L与椭圆交于P、Q两点,N在线段PQ上,若有eq?%5Cfrac%7B%5Cleft%20%7C%20PM%20%5Cright%20%7C%7D%7B%5Cleft%20%7C%20PN%20%5Cright%20%7C%7D%3D%5Cfrac%7B%5Cleft%20%7C%20QM%20%5Cright%20%7C%7D%7B%5Cleft%20%7C%20QN%20%5Cright%20%7C%7D%3D%5Clambda,求eq?%5Clambda的取值范围。 

c5e29d7ad4f74156bb7bc079a7b5859a.png

分析:

    将题干原式变化得eq?%5Cfrac%7B%5Cleft%20%7C%20MP%20%5Cright%20%7C%7D%7B%5Cleft%20%7C%20MQ%20%5Cright%20%7C%7D%3D%5Cfrac%7B%5Cleft%20%7C%20NP%20%5Cright%20%7C%7D%7B%5Cleft%20%7C%20NQ%20%5Cright%20%7C%7D,可知N为M的调和共轭点,故N的轨迹为M的极线eq?%5Cfrac%7B0%5Ccdot%20x%7D%7B8%7D+%5Cfrac%7B2y%7D%7B2%7D%3D1即为y=1,如图当L自与y轴重合旋转至与椭圆相切的过程中,PM增大,PN减小且趋于0,则eq?%5Clambda在L与y轴重合时取到最小值,趋于无穷大,经计算eq?%5Clambda%20%5Cin%20%5B%5Csqrt%7B2%7D%2C+%5Cinf%29。尽管不可直接使用结论,极点极线的思想也帮助你完成了思路的打开和答案的计算。

例②

    已知椭圆:eq?%5Cfrac%7Bx%5E%7B2%7D%7D%7B6%7D+%5Cfrac%7By%5E%7B2%7D%7D%7B3%7D%3D1,L:eq?%5Cfrac%7Bx%7D%7B3%7D+y%3D1,P为L上任意一点,过P引椭圆的切线PA、PB,若ODeq?%5CperpAB,D为垂足,求证存在点Q,使得DQ为定值,并求该定值。

分析:

    由性质2我们知道AB过定点R,有L方程知R的坐标为(2,3),由ODeq?%5CperpAB,知D在以OR为半径的圆上,则OR的中点即为Q,且DQ=eq?%5Cfrac%7B%5Csqrt%7B13%7D%7D%7B2%7D

结语:

    极点极线的思想能够帮助解决解析几何中一些常见模型,学会极点极线思想不是背诵好结论,而是形成一种直觉,当题目给定了定点时,迅速考虑其极线在题中是否有用,给定定直线则亦然。

    本文例题皆以椭圆为例,其它二次曲线的例题请读者自行研究。

    本文尚未给出的较为复杂的极点极线的性质和各色例题,可移步至此进一步研究:    极点极线10个性质以及在近几年全国卷中的应用 (qq.com)

     

    

     

  • 29
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
作者: 萧振纲 出版社: 大连理工大学出版社 副标题: 几何变换与几何证题 出版年: 2010-5 页数: 749 定价: 88.00元 ISBN: 9787560329956 内容简介 · · · · · · 《几何变换与几何证题》所研究的几何变换仅限于平面上的合同变换、相似变换和反演变换这三类初等几何变换;《几何变换与几何证题》系统地阐述了这三类几何变换的理论和它们在几何证题方面的应用。阅读《几何变换与几何证题》只需要具有中学数学知识即可;对于阅读几何变换理论有困难的读者,也可以只阅读与几何证题有关的章节。 《几何变换与几何证题》适合大中师生及数学爱好者使用。 目录 · · · · · · 第1章 合同变换 1.1 映射·变换·变换群  1.2 合同变换及其性质 1.3 三种基本合同变换——平移、旋转、轴反射 1.4 合同变换与基本合同变换的关系 1.5 自对称图形 习题1第2章 相似变换 2.1 相似变换及其性质 2.2 基本相似变换——位似变换 2.3 位似旋转变换 2.4 位似轴反射变换 2.5 三相似图形 习题2第3章 平移变换与几何证题 3.1 平行四边形与平移变换 3.2 共线相等线段与平移变换 3.3 一般相等线段与平移变换 3.4 平行与平移变换 3.5 线段比及其他与平移变换 习题3第4章 旋转变换与几何证题 4.1 中点与中心反射变换 4.2 平行四边形及其他与中心反射变换 4.3 正三角形与旋转变换 4.4 正方形、等腰直角三角形与旋转变换 4.5 等腰三角形、相等线段与旋转变换 4.6 三角形的连接与旋转变换之积 习题4第5章 轴反射变换与几何证题 5.1 轴对称图形与轴反射变换 5.2 角平分线与轴反射变换 5.3 垂直与轴反射变换 5.4 圆与轴反射变换 5.5 圆内接四边形的两个基本性质 5.6 30°的角与轴反射变换 5.7 两类几何不等式与轴反射变换 5.8 轴反射变换处理其他问题举例 习题5第6章 位似变换与几何证题 6.1 线段比与位似变换 6.2 共点线、共线点与位似变换 6.3 Menelaus定理与Ceva定理 6.4 两圆与位似变换 6.5 平行及其他与位似变换 习题6第7章 位似旋转变换、位似轴反射变换与几何证题 7.1 三角形与位似旋转变换 7.2 同向相似三角形与位似旋转变换 7.3 两圆与位似旋转变换 7.4 等角线及其他与位似旋转变换 7.5 三角形的连接与位似旋转变换之积 7.6 位似轴反射变换与几何证题 习题7第8章 反演变换 8.1 反演变换及其性质 8.2 线段度量关系与反演变换 8.3 圆与反演变换 8.4 两圆的互反性 8.5 几何命题的反演命题 8.6 极点极线 习题8附录 附录A 点对圆的幂·根轴·根心 附录B Menelaus定理与Ceva定理的角元形式参考解答参考文献编辑手记 萧振纲,教授。毕业于湖南师范大学数学系。长期致力于初等数学与竞赛数学的教学研究工作。自1984年开始,先后在国内外刊物上发表初等数学与竞赛数学的教学研究论文130余篇。 出版《几何变换与几何证题》学术专著1部;与他人合作出版《初等数论》教材一部;参与编写《初等几何研究》教材一部;在全国数学竞赛命题比赛中曾获一等奖;并先后为全国高中数学联赛,IMO中国国家集训队,IMO中国国家队选拔考试以及中国东南地区数学奥林匹克提供过平面几何试题。
高等几何 出版时间:2012年版 内容简介   《21世纪高等院校数学基础课系列教材:高等几何》是按照高等院校《高等几何教学大纲》的要求,同时结合作者多年来开设高等几何课程的教学实践,以及对高等几何面向21世纪的课程体系和教学内容的深入研究编写而成的。全书共分五章:前四章是根据克莱因的变换群观点,以射影变换为基本线索,介绍一维和二维射影几何的基本内容和射影观点下的仿射几何与欧氏几何理论,其中重点讨论二次曲线的射影、仿射和度量理论,以明确各几何学的关系,使读者可以从较高的观点认识初等几何;第五章为选学内容,介绍平面射影几何基础和非欧几何的初步知识。《21世纪高等院校数学基础课系列教材:高等几何》每节配有适量的习题,每章还配有总习题,书末附有习题答案与提示,以便于教师教学与学生自学。为了激发学生学习射影几何的兴趣,书末添加了一个附录,简要介绍射影几何的发展史。《21世纪高等院校数学基础课系列教材:高等几何》可作为高等院校数学专业高等几何课程的教材,还可供中学几何教师作为教学参考书。 目录 第一章 射影平面 §1.1 无穷远(理想)元素 一、射影几何 二、中心投影 三、无穷远(理想)元素 习题1.1 §1.2 齐次坐标 一、齐次坐标的引进 二、射影平面的定义 三、有序三实数组的运算 四、射影平面上的直线及点线结合关系 习题1.2 §1.3 对偶原理与Desargues透视定理 一、平面图形 二、Desargues透视定理 三、对偶原理 习题1.3 §1.4 射影坐标与射影坐标变换 一、一维射影坐标与坐标变换 二、二维射影坐标与坐标变换 习题1.4 习题一 第二章 射影变换 §2.1 射影变换 一、变换的概念 二、一维射影映射 三、二维射影映射 习题2.1 §2.2 交比 一、交比的概念 二、配景定理 三、交比的性质 四、交比与一维射影坐标 五、交比与射影映射 六、用交比解释的几个概念 习题2.2 §2.3 透视映射 一、透视映射的定义 二、构成透视映射的条件 三、透视映射与射影映射 四、Pappus定理 五、完全四点形与完全四线形 六、直线(线束)上的射影变换 习题2.3 §2.4 对合变换 一、对合的定义 二、对合变换的确定 三、对合变换与射影变换 四、对合变换的类型 五、Desargues对合定理 习题2.4 §2.5 直射变换 一、二重元素 二、透射变换 三、调和透射变换 四、合射变换 五、各种特殊直射变换的表达式 六、射影变换与初等几何变换 习题2.5 习题二 第三章 配极变换与二次曲线 §3.1 配极变换 一、对射变换 二、配极变换的概念 三、共轭点与共轭直线 四、由配极变换导出的一维对合变换 五、自配极三点形 六、配极变换的类型 习题3.1 §3.2 二次曲线 一、二次曲线的概念 二、极点极线 三、二次曲线方程的另一简化形式 四、Steiner定理 习题3.2 §3.3 Pascal定理与Brianchon定理 一、Pascal定理 二、Brianchon定理 习题3.3 §3.4 二次曲线上的射影变换与二次曲线的射影分类 一、二次曲线上的射影变换 二、二次曲线上的对合变换 三、一次点列与二次点列的透视对应 四、二次曲线的射影分类 习题3.4 习题三 第四章 射影观点下的仿射几何与欧氏几何 §4.1 仿射变换与仿射几何 一、仿射平面 二、平面仿射坐标系 三、仿射比 四、仿射变换 习题4.1 §4.2 二次曲线的仿射理论 一、二次曲线的仿射性质 二、二次曲线的仿射分类与标准方程 习题4.2 §4.3 运动变换与欧氏几何 一、虚元素的引进 二、运动变换 三、笛卡儿直角坐标系 四、拉格儿公式 习题4.3 §4.4 二次曲线的度量理论 一、圆的一些性质 二、二次曲线的主轴和顶点 三、二次曲线的焦点和准线 四、解析几何中的应用举例 习题4.4 §4.5 变换群与几何学 一、克莱因的变换群观点 二、三种几何学的比较 习题4.5 …… 第五章 平面射影几何基础与非欧几何概要 附录 射影几何发展简史 参考文献 名词索引 习题答案与提示

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值