预备知识:
一:调和分割
如图:,即称PQ调和分割PB,PAQB称为一个调和点列。
二:定比点差法
如图,直线l交椭圆于AB两点,P为直线上椭圆外一点,若
则有:
由A、B在椭圆上,有:
二式相减并带入式,得到:
极点极线:
1.极点极线的几何定义:
过点P的直线交二次曲线Ω(圆、椭圆、双曲线、抛物线)于A、B两点,若
上存在一点Q,使得
,则称点Q为P关于Ω的调和共轭点。当
开始旋转,Q的轨迹将形成一条直线
,则称
为P关于Ω的极线,相应地,称P为
关于Ω的极点。
注1:
极点极线一一对应地成对存在。确定的点P必然对应唯一的极线L,确定的极线L必然对应唯一的极点P。
极点是平面内的任意一点,可在二次曲线外,也可在二次曲线上。
2.极点极线的代数推导:
极点极线的一一对应性质,告诉我们知道了平面内一点的坐标,必然可以求出此点关于二次曲线的极线方程,反之亦然。那么,这一一对应的性质是怎么来的?具体该怎么求极点极线?带着这两个问题,我们来研究极点极线的数学推导。
由预备知识,我们只需对和
用两次定比点差方法即可。
过程中注意负号,具体过程如下:
①
②
由A、B在椭圆上,有:
二式相减并带入
式,得到:
③
联立②③得
由此我们得到:如果我们已知P坐标,则Q点的轨迹是一条方程为
的直线
,由极点极线的几何定义,易知
即为所求的P关于Ω的极线。
以上是以椭圆为例的推导,接下来给出一般二次曲线的极点极线公式推导:
已知二次曲线Ω:
①
②
③
④
联立①②③④得式
综上所述,对于已知点P,已知二次曲线Ω
,点P关于Ω所对的极线
方程为
注2:
若极点在二次曲线上,则其对应极线为过该极点的二次曲线的切线。
3.极点极线的性质:
极点极线具有很多良好的性质,事实上很多看起来“巧合”的定点定直线题目,背后都蕴含着极点极线的规律。
需要注意的是,由于极点极线规律往往不能直接使用,极点极线的思想对于高考生来说其实是“蒙”答案、开辟思路的方法,而非生搬硬套的“公式”。也正因此,关于极点极线的性质,高考生实则无须学会它们的推导和记忆,有个大概印象,在见到看似是极点极线思想的题目的时候能“蒙”出思路或是答案即可。
极点极线的性质1:
有二次曲线Ω,任意一点P,在点P关于Ω所对应的极线上任取一点Q,则Q关于Ω所对应的极线
必经过P。
该性质可由极点极线的代数推导轻易导出。
极点极线的性质2:
有二次曲线Ω,任意直线,在
上任取一点P,过P作Ω两条切线交Ω于A、B,则A、B恒过
所对的极点Q。
简单推导如下:
由注2和性质1,在A所对应的极线PA上取一点P,则P所对应的极线必过A,同理P所对应的极线必过B,故AB即为P所对应的极线,在P所对应的极线上任取一点Q,则Q所对应极线必经过P。
如上,由于笔者不打算引入调和点束等知识,且极点极线其它的性质解释过于复杂,故仅抛出两例。
4.极点极线思想的几道例题:
例①:
已知椭圆 ,过M(0,2)的直线L与椭圆交于P、Q两点,N在线段PQ上,若有
,求
的取值范围。
分析:
将题干原式变化得,可知N为M的调和共轭点,故N的轨迹为M的极线
即为y=1,如图当L自与y轴重合旋转至与椭圆相切的过程中,PM增大,PN减小且趋于0,则
在L与y轴重合时取到最小值,趋于无穷大,经计算
。尽管不可直接使用结论,极点极线的思想也帮助你完成了思路的打开和答案的计算。
例②
已知椭圆:,L:
,P为L上任意一点,过P引椭圆的切线PA、PB,若OD
AB,D为垂足,求证存在点Q,使得DQ为定值,并求该定值。
分析:
由性质2我们知道AB过定点R,有L方程知R的坐标为(2,3),由ODAB,知D在以OR为直径的圆上,则OR的中点即为Q,且DQ=
结语:
极点极线的思想能够帮助解决解析几何中一些常见模型,学会极点极线思想不是背诵好结论,而是形成一种直觉,当题目给定了定点时,迅速考虑其极线在题中是否有用,给定定直线则亦然。
本文例题皆以椭圆为例,其它二次曲线的例题请读者自行研究。
本文尚未给出的较为复杂的极点极线的性质和各色例题,可移步至此进一步研究: 极点极线10个性质以及在近几年全国卷中的应用 (qq.com)