danbooru Portraits Training

这篇博客介绍了如何准备danbooru肖像数据集以供深度学习模型训练,特别是StyleGAN2。数据集需转换为多分辨率TFRecords格式,要求图像为正方形且尺寸为2的幂。作者提到了使用Docker镜像,并将数据集挂载到镜像中,通过特定命令生成不同分辨率的tfrecord文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

prepare dataset

Datasets are stored as multi-resolution TFRecords, similar to the original StyleGAN. Each dataset consists of multiple .tfrecords files stored under a common directory, e.g., ~/datasets/ffhq/ffhq-r.tfrecords. In the following sections, the datasets are referenced using a combination of --dataset and --data-dir arguments, e.g., --dataset=ffhq --data-dir=~/datasets.

Custom. Create custom datasets by placing all training images under a single directory. The images must be square-shaped and they must all have the same power-of-two dimensions. To convert the images to multi-resolution TFRecords, run:

python dataset_tool.py create_from_images ~/datasets/my-custom-dataset ~/my-cust
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MrCharles

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值