最小高度树

该博客讨论了LeetCode中的310题——最小高度树。内容包括问题描述、解题思路、具体代码实现以及算法分析,旨在构建一棵高度尽可能小的平衡二叉树。
摘要由CSDN通过智能技术生成

310. 最小高度树

来源: LeetCode 310. 最小高度树

题目描述

310. 最小高度树
对于一个具有树特征的无向图,我们可选择任何一个节点作为根。图因此可以成为树,在所有可能的树中,具有最小高度的树被称为最小高度树。给出这样的一个图,写出一个函数找到所有的最小高度树并返回他们的根节点。

格式

该图包含 n 个节点,标记为 0 到 n - 1。给定数字 n 和一个无向边 edges 列表(每一个边都是一对标签)。

你可以假设没有重复的边会出现在 edges 中。由于所有的边都是无向边, [0, 1]和 [1, 0] 是相同的,因此不会同时出现在 edges 里。

示例 1:

输入: n = 4, edges = [[1, 0], [1, 2], [1, 3]]

        0
        |
        1
       / \
      2   3 

输出: [1]
示例 2:

输入: n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

     0  1  2
      \   |  /
         3
         |
         4
         |
        5 

输出: [3, 4]
说明:

 根据树的定义,树是一个无向图,其中任何两个顶点只通过一条路径连接。 换句话说,一个任何没有简单环路的连通图都是一棵树。
树的高度是指根节点和叶子节点之间最长向下路径上边的数量。

思路分析

建立数据结构-邻接表
朴素办法
BFS所能传播的最远距离
判断所有点
但是这里有很多重叠问题,先看下朴素法是否能跑过
果然大数据N/A
这里有很多重叠问题,其实并不需要判断所有点
我们可以从叶子结点同时向上找根节点最后找到的那一组就是我们的答案
如果要符合树特征,则该图必定不存在环,则该图即为一个无向无环图
因此我们可以从叶节点开始不断删除结点最后剩下的结点就为我们所求的根节点
该根结点数目必为1或2
假设满足条件的根节点数目为3则,每一个根节点到另外两个根节点的距离都相等
则三点必然构成三角形,环路存在
故根节点数目必为1或2
回顾下拓扑排序,我们每次删除的点应该为入度为0的点,然后逐步删除直至所有点删除结束
这道题也可以采用类似的思想,我们每次删除入度为1的点直至剩余个数为1或2即为我们的所求

代码

class Solution {
   
public:
    vector<int> findMinHeightTrees(int n, vector<vector<int>>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值