击鼓传花
问题描述:有n个人围成一圈,顺序排号。从第一个人开始报数(1~3报数),凡报到3的人退出圈子,问最后留下的人原来排在第几号?
输入:参与游戏的人数 输出:最后剩下的人编号为:xx
class Queue:
def __init__(self):
self.items = []
# input在前,output在后
def enqueue(self, item):
self.items.insert(0,item)
def dequeue(self):
return self.items.pop()
def size(self):
return len(self.items)
def hot_potato(name_list, num):
sim_queue = Queue()
for name in name_list:
sim_queue.enqueue(name)
while sim_queue.size()>1:
for i in range(num):
sim_queue.enqueue(sim_queue.dequeue())
sim_queue.dequeue()
return sim_queue.dequeue()
print(hot_potato(["A", "B", "C", "D", "F","G"], 3))
hot_potato(["A", "B", "C", "D", "F","G"], 3)
其中ABC...
表示不同的人,3表示报数
数字黑洞
问题描述:给定任意一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序得到结果1,再按非递减排序得到结果2,然后用结果1-结果2,将得到一个新的数字。一直重复这样做,你会发现结果很快停留在6174,这个6174称之为“数字黑洞”,这个神奇的数字也称之为Kaprekar常数。
例如,我们从6767开始,将得到:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
n=input()
if len(n)<4:
n="0"*(4-len(n))+n
if n[0]==n[1]==n[2]==n[3]:
print("%s - %s = 0000"%(n,n))
exit()
def f(x):
a="".join(sorted(x))
b=a[::-1]
c=str(int(b)-int(a))
if len(c)<4:
c="0"*(4-len(c))+c
print("%s - %s = %s"%(b,a,c))
if c=="6174":
return
else:
f(c)
f(n)