《python核心编程》的第一部分读完之后,开始总结python的基础结构图,觉得生成器和迭代器的关系错综复杂,于是乎,没事呀,就研究研究吧。
迭代器
内建函数iter()
list,tuple,dict,set,str等集合数据类型不是迭代器对象Iterator但它们是可迭代对象Iterable,可以使用iter()方法将Iterable变成Iterator对象
自定义迭代器
自定义迭代器必须实现__iter__()
和next()
方法
class d:
def __init__(self, data):
self.date = data
self.index = len(data)
def __iter__(self):
return self
def next(self):
if self.index == 0:
raise StopIteration
self.index = self.index - 1
return self.date[self.index]
dh = d([1, 5])
print type(dh) # <type 'instance'>
for x in dh:
print x
生成器
生成器是一种特殊的迭代器,内部支持了生成器协议,不需要明确定义iter()和next()方法
def b():
yield 12
yield 13
bf = b()
for i in bf:
print i
生成器中还有两个很重要的方法:send()和close()。
send(value):
从前面了解到,next()方法可以恢复生成器状态并继续执行,其实send()是除next()外另一个恢复生成器的方法。
Python 2.5中,yield语句变成了yield表达式,也就是说yield可以有一个值,而这个值就是send()方法的参数,所以send(None)和next()是等效的。同样,next()和send()的返回值都是yield语句处的参数(yielded value)
关于send()方法需要注意的是:调用send传入非None值前,生成器必须处于挂起状态,否则将抛出异常。也就是说,第一次调用时,要使用next()语句或send(None),因为没有yield语句来接收这个值。
close():
这个方法用于关闭生成器,对关闭的生成器后再次调用next或send将抛出StopIteration异常。
生成器和迭代器主要有以下几点区别:
- 迭代器是一个对象,生成器是一个函数。
- 迭代器包含
__iter__()
和next()
方法__iter__()
返回迭代器本身(self),next()返回next()方法返回容器的下一个元素;生成器有生成器函数生成,但是不用return返回,而是yield一次返回一个结果,且“暂停”代码的执行。 - 生成器是一种特殊的迭代器,可使用next()方法。
def a():
yield 1
yield 2
af = a()
af.next() # 1
af.next() # 2