[ A*算法 ] 八数码

该博客探讨了八数码游戏的解决方法,利用A*算法寻找从初始配置到目标状态的最小移动步数。玩家需在3x3网格中通过交换'X'与相邻数字来达到预设的正确排列。输入是初始网格状态,输出是达成目标状态的最短移动序列。若无解,则输出'unsolvable'。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在一个3×3的网格中,1~8这8个数字和一个“X”恰好不重不漏地分布在这3×3的网格中。

例如:

1 2 3
X 4 6
7 5 8

在游戏过程中,可以把“X”与其上、下、左、右四个方向之一的数字交换(如果存在)。

我们的目的是通过交换,使得网格变为如下排列(称为正确排列):

1 2 3
4 5 6
7 8 X

例如,示例中图形就可以通过让“X”先后与右、下、右三个方向的数字交换成功得到正确排列。

交换过程如下:

1 2 3   1 2 3   1 2 3   1 2 3
X 4 6   4 X 6   4 5 6   4 5 6
7 5 8   7 5 8   7 X 8   7 8 X

把“X”与上下左右方向数字交换的行动记录为“u”、“d”、“l”、“r”。

现在,给你一个初始网格,请你通过最少的移动次数,得到正确排列。

输入格式

输入占一行,将3×3的初始网格描绘出来。

例如,如果初始网格如下所示:
1 2 3

x 4 6

7 5 8

则输入为:1 2 3 x 4 6 7 5 8

输出格式

输出占一行,包含一个字符串,表示得到正确排列的完整行动记录。如果答案不唯一,输出任意一种合法方案即可。

如果不存在解决方案,则输出”unsolvable”。

输入样例:

2  3  4  1  5  x  7  6  8 

输出样例

### A*算法八数码问题中的应用 #### 什么是A*算法A*算法是一种启发式搜索算法,用于寻找加权图中最短路径。它结合了Dijkstra算法贪心最佳优先搜索的特点,在每一步都评估节点的重要性并决定下一步的方向[^1]。 #### 八数码问题描述 八数码问题是经典的AI问题之一,目标是在一个3×3的棋盘上移动8数字方块以及一个空白格子,使得初始状态变为目标状态。这个问题可以通过状态空间表示为无向图上的最短路径问题来解决。 #### 使用A*算法解决八数码问题的关键要素 为了使用A*算法解决问题,需要定义以下几个关键部分: 1. **状态表示** 每种可能的状态可以用一个长度为9的一维数组或者二维矩阵表示,其中`0`代表空白位置。例如: ```python initial_state = [ [1, 2, 3], [4, 0, 5], [7, 8, 6] ] goal_state = [ [1, 2, 3], [4, 5, 6], [7, 8, 0] ] ``` 2. **代价函数g(n)** g(n)是从起始节点到当前节点的实际代价。在这个问题中,通常将其视为步数计数器,即从初始状态到达某个特定状态所需的移动次数。 3. **启发函数h(n)** h(n)是对剩余距离的一个估计值。常用的两种方法分别是曼哈顿距离(Manhattan Distance)欧几里得距离(Euclidean Distance)。对于八数码问题来说,更常用的是曼哈顿距离,因为它更容易计算且效果较好。 曼哈顿距离公式如下所示: \[ h(n)=\sum_{i=1}^{N}|x_i-\text{goal}_x|+|\ y_i-\text{goal}_y| \] 4. **总估价f(n)** 总估价值由实际成本加上预计未来成本构成:\[ f(n) = g(n)+h(n)\ ] 以下是基于Python实现的具体代码示例: ```python from collections import deque def manhattan_distance(state): distance = 0 for i in range(3): for j in range(3): value = state[i][j] if value != 0: target_x, target_y = divmod(value - 1, 3) distance += abs(i - target_x) + abs(j - target_y) return distance class Node: def __init__(self, state, parent=None, action=None, path_cost=0): self.state = state self.parent = parent self.action = action self.path_cost = path_cost self.heuristic = manhattan_distance(self.state) @property def total_cost(self): return self.path_cost + self.heuristic initial_state = [[1, 2, 3], [4, 0, 5], [7, 8, 6]] goal_state = [[1, 2, 3], [4, 5, 6], [7, 8, 0]] def find_zero_position(state): for i in range(len(state)): for j in range(len(state[0])): if state[i][j] == 0: return (i, j) def generate_successors(node): successors = [] zero_pos = find_zero_position(node.state) moves = [(0, 1), (1, 0), (-1, 0), (0, -1)] for move in moves: new_x = zero_pos[0] + move[0] new_y = zero_pos[1] + move[1] if 0 <= new_x < 3 and 0 <= new_y < 3: new_state = [row[:] for row in node.state] temp = new_state[new_x][new_y] new_state[new_x][new_y] = 0 new_state[zero_pos[0]][zero_pos[1]] = temp successor_node = Node( state=new_state, parent=node, action=(move), path_cost=node.path_cost + 1 ) successors.append(successor_node) return successors frontier = [] # Priority Queue implementation required here. explored_set = set() start_node = Node(initial_state) frontier.append(start_node) solution_found = False while frontier: current_node = min(frontier, key=lambda x: x.total_cost) frontier.remove(current_node) if current_node.state == goal_state: solution_found = True break explored_set.add(tuple(map(tuple, current_node.state))) successors = generate_successors(current_node) for succ in successors: if tuple(map(tuple, succ.state)) not in explored_set: frontier.append(succ) if solution_found: steps = [] while current_node is not None: steps.insert(0, current_node.state) current_node = current_node.parent print(steps) else: print("No Solution Found.") ``` 上述程序展示了完整的解决方案流程,并利用了曼哈顿距离作为启发函数的一部分。 #### 结论 通过合理设计状态转移逻辑、选取合适的启发函数以及有效管理已访问过的节点集合等方式,我们可以高效地运用A*算法去解答诸如八数码这样的经典难题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值