[ A*算法 ] 八数码

该博客探讨了八数码游戏的解决方法,利用A*算法寻找从初始配置到目标状态的最小移动步数。玩家需在3x3网格中通过交换'X'与相邻数字来达到预设的正确排列。输入是初始网格状态,输出是达成目标状态的最短移动序列。若无解,则输出'unsolvable'。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在一个3×3的网格中,1~8这8个数字和一个“X”恰好不重不漏地分布在这3×3的网格中。

例如:

1 2 3
X 4 6
7 5 8

在游戏过程中,可以把“X”与其上、下、左、右四个方向之一的数字交换(如果存在)。

我们的目的是通过交换,使得网格变为如下排列(称为正确排列):

1 2 3
4 5 6
7 8 X

例如,示例中图形就可以通过让“X”先后与右、下、右三个方向的数字交换成功得到正确排列。

交换过程如下:

1 2 3   1 2 3   1 2 3   1 2 3
X 4 6   4 X 6   4 5 6   4 5 6
7 5 8   7 5 8   7 X 8   7 8 X

把“X”与上下左右方向数字交换的行动记录为“u”、“d”、“l”、“r”。

现在,给你一个初始网格,请你通过最少的移动次数,得到正确排列。

输入格式

输入占一行,将3×3的初始网格描绘出来。

例如,如果初始网格如下所示:
1 2 3

x 4 6

7 5 8

则输入为:1 2 3 x 4 6 7 5 8

输出格式

输出占一行,包含一个字符串,表示得到正确排列的完整行动记录。如果答案不唯一,输出任意一种合法方案即可。

如果不存在解决方案,则输出”unsolvable”。

输入样例:

2  3  4  1  5  x  7  6  8 

输出样例

ullddrurdllurdruldr
难度: 中等
时/空限制: 1s / 64MB
总通过数: 384
总尝试数: 815
来源: 《算法竞赛进阶指南》
算法标签

 

#include <iostream>
#include <queue>
#include <string>
#include <unordered_map>
#include <cmath>
#include <algorithm>
#define f(i,l,r) for(i=(l);i<=(r);i++)
#define d first
#define se second
using namespace std;
typedef pair<int, string> PIS;
string st, ed = "12345678x", pd;
int num;
priority_queue<PIS, vector<PIS>, greater<PIS> > q;
unordered_map<string, int> dis;
unordered_map<string, pair<char, string> > pre;
int dx[] = {-1, 0, 0, 1};
int dy[] = {0, 1, -1, 0};
char op[] = {'u', 'r', 'l', 'd'};
int h(string s)
{
    int i, res = 0;
    f(i, 0, 8){
        if(s[i] != 'x'){
            int t = s[i] - '1';
            res += abs(i / 3 - t / 3) + abs(i % 3 - t % 3);
        }
    }
    return res;
}
string bfs()
{
    int i;
    q.push({h(st), st});
    dis[st] = 0;
    while(!q.empty()){
        PIS tmp = q.top();
        q.pop();
        if(tmp.se == ed) break;
        int pos = tmp.se.find('x');
        int x = pos / 3, y = pos % 3;
        f(i, 0, 3){
            int nx = x + dx[i];
            int ny = y + dy[i];
            if(nx < 0 || nx > 2 || ny < 0 || ny > 2) continue;
            string s = tmp.se;
            swap(s[pos], s[nx * 3 + ny]);
            if(dis[s] == 0 || dis[s] > dis[tmp.se] + 1){
                dis[s] = dis[tmp.se] + 1;
                pre[s] = {op[i], tmp.se};
                q.push({h(s) + dis[s], s});
            }
        }
    }
    string res, s = ed;
    while(s != st){
        res += pre[s].first;
        s = pre[s].se;
    }
    reverse(res.begin(), res.end());
    return res;
}
int main()
{
    int i, j;
    f(i, 1, 9){
        string ch;
        cin >> ch;
        st += ch;
        if(ch != "x") pd +=ch;
    }
    f(i, 0, 7){
        f(j, i + 1, 7){
            if(pd[i] > pd[j]) num ++;
        }
    }
    if(num & 1) cout << "unsolvable" << endl;
    else cout << bfs() << endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值