矩阵快速幂 洛谷p3390

题目背景

矩阵快速幂

题目描述

给定n*n的矩阵A,求A^k

输入输出格式

输入格式:

第一行,n,k

第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素

输出格式:

输出A^k

共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7

输入输出样例

输入样例#1:
2 1
1 1
1 1
输出样例#1:
1 1
1 1

说明

n<=100, k<=10^12, |矩阵元素|<=1000算法:矩阵快速幂


#include<iostream>
#include<cstring>
#define f(i,l,r) for(i=(l);i<=(r);i++)
using namespace std;
const int MAXN=105,MOD=1000000007;
int n;
struct Matrix{
	int a[MAXN][MAXN];
	Matrix(){
		memset(a,0,sizeof(a));
	}
	Matrix operator * (const Matrix& x)const{
		Matrix ans;
		int i,j,k;
		f(i,1,n){
			f(j,1,n){
				f(k,1,n){
					ans.a[i][j]=(ans.a[i][j]+(1LL*a[i][k]*x.a[k][j])%MOD)%MOD;
				}
			}
		}
		return ans;
	}
	void read(){
		int i,j;
		f(i,1,n) f(j,1,n) cin>>a[i][j];
	}
	void write(){
		int i,j;
		f(i,1,n){
			f(j,1,n){
				cout<<a[i][j]<<' ';
			}
		cout<<endl;
		}
	}
}A;
inline Matrix Pow(Matrix x,long long k)
{
	Matrix ans=x;
	k--;
	for(;k;k>>=1,x=x*x){
		if(k&1) ans=ans*x;
	}
	return ans;
}
int main()
{
	ios::sync_with_stdio(false);
	int i,j;
	long long k;
	cin>>n>>k;
	A.read();
	A=Pow(A,k);
	A.write();
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值