题意:
给你一串01串,你可以在任意位置插入0或1,有三个及以上的连续的相同的会消去,会有连锁反应,问至少插入几次能消完
思路:听说是个原题,,,这场真多原题
有三种消除方式:
1.直接将区间分成两部分,各消各的。
2.如果两头是同色的,可以消完中间的,合并后消去两头,代价和两头的数量有关。
3.如果两头同色,又存在一头只有一个连续的情况,可以中间再找一个相同颜色的,三个合并后再消。
#include <iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=220;
char s[N];
int a[N],f[N][N];
int main(int argc, const char * argv[]) {
int T,kase=0;
scanf("%d",&T);
while(T--)
{
scanf("%s",s);
int n=strlen(s),m=0;
a[++m]=1;
for(int i=1;i<n;i++)
{
if(s[i]!=s[i-1]) a[++m]=0;
a[m]++;
}
for(int i=m;i>0;i--)
for(int j=i;j<=m;j++)
{
if(i==j)//i==j 直接返回需要补充的数量
{
f[i][j]=3-a[i];
continue;
}
f[i][j]=n+n;//初始化最大值为2*n
for(int k=i;k<j;k++) f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]);//分成两半考虑
if((j-i)&1) continue;//如果间隔为奇数,则不是同种颜色
f[i][j]=min(f[i][j],f[i+1][j-1]+(a[i]+a[j]==2));//i和j同色,可以等中间消掉,如果两边都是1还得加上1的代价
if(a[i]+a[j]<4)//如果i和j存在有1,可以i,k,j三个同色的一起消
{
for(int k=i+2;k<j;k+=2)
if(a[k]==1) f[i][j]=min(f[i][j],f[i+1][k-1]+f[k+1][j-1]);
}
}
printf("Case #%d: %d\n",++kase,f[1][m]);
}
}