今天给大家带来个好东西,我们的平台接入当下最流行的LLama2 70B、Mixtral 8x7B和Gemma 7B了!
从Groq.com上薅到了一些免费的额度,可以在有限的访问量上用到这些世界一流的模型。现在,我们的平台支持如下的模型:
"meta-llama/llama-70b:free": # 由meta推出的LLaMA2 70B开源模型,支持4k上下文
"mistralai/mixtral-8x7b:free": # 由Mistral推出的8x7B开源模型,支持32k上下文
"google/gemma-7b:free": # 由Google推出的Gemma 7B开源模型,支持8k上下文
"01-ai/yi34b:free": # 零一万物34B
"mistralai/mistral-7b-instruct:free": # 由Mistral推出的Mistral 7B
"undi95/toppy-m-7b:free": # Toppy M 7B
"openchat/openchat-7b:free": # OpenChat 3.5 7B
了解到有些朋友在使用CrewAI。CrewAI的使用方式非常简单,只需要加入如下代码:
import os
os.environ["OPENAI_API_BASE"]="https://api.mrtoyy.com/v1"
os.environ["OPENAI_MODEL_NAME"]="meta-llama/llama-70b:free" # 根据需要选择
os.environ["OPENAI_API_KEY"]="123456" # 目前可以随便填
对于AutoGen的用户,稍微复杂一点,代码如下:
import autogen
def generate_config_list(model_names, api_key='your_api_key'):
# 如果输入是字符串,将其转换为只有一个元素的数组
if isinstance(model_names, str):
model_names = [model_names]
base_url = 'https://api.mrtoyy.com/v1/'
# 使用列表推导式创建配置列表
return [{'model': model_name, 'api_key': api_key, 'base_url': base_url} for model_name in model_names]
config_list = generate_config_list(
model_names=["meta-llama/llama-70b:free"], # 将需要用到的模型作为列表填入
api_key="YOUR_API_KEY" # 目前可以随便填,我还没有完成用户系统部分
) # 配置AutoGen需要的config_list
assistant = autogen.AssistantAgent(
name="assistant",
llm_config={
"config_list": config_list, # 将前面生成的config_list作为参数传入
"temperature": 0,
},
)
好了,你已经可以使用最流行的大模型了。如果大家喜爱,我下一步再把收费的大模型接口整合进来。