谈笑间学会数仓—维度表概念及设计案例

本文详细介绍了维度表在数据仓库中的角色,包括维度定义、构成、操作和分类。通过零售业的案例,阐述了日期、产品、商店和促销等维度表的设计,强调了维度表在数据分析中的重要性,如钻取、旋转和切片切块等操作。此外,还讨论了特殊维度类型,如退化维、垃圾维和缓慢变化维等概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

维度表

维度定义

从某个角度观察事实数据的窗口,存储的数据用来从某个角度描述事实。维度表可以看成是用户用来分析一个事实的窗口,它里面的数据应该是对事实的各个方面描述,比如时间维度表,它里面的数据就是一些日,周,月,季,年,日期等数据,维度表只能是事实表的一个分析角度。换句话说 维度表可以看作是用户来分析数据的窗口,维度表中包含事实数据表中事实记录的特性,有些特性提供描述性信息,有些特性指定如何汇总事实数据表数据,以便为分析者提供有用的信息,维度表包含帮助汇总数据的特性的层次结构。

维度的构成

维度的元素:维度的取值,即维度中的各个数据元素的取值。例如,地区维度中具体的成员有英国、法国、德国。

在设计过程中,来自数据源的数值数据字段到底是一个已度量的事实还是一个维度的属性是比较容易混淆的一个问题。一般情况下,在每次抽样时,如果数值数据字段的度量都改变,那么它就是事实,如果它是某种东西的离散值描述,并几乎保持为常数,那么它就是维属性。

维度的操作

1、钻取:通过变换维度的层次,改变粒度的大小。它包括上钻取(Drill up)和向下钻取(Drill down)。向上钻取是将细节数据向上追溯到最高层次的汇总数据。向下钻取是将高层次的汇总数据深入到低层的细节数据中。
2、旋转:通过变换维度的方向,重新安排维的位置,例如行列转换。
3、切片和切块:在一个或者多个维度上选取固定的值,分析其他维度上的度量数据。如果其他维度剩余两个,则是切片;如果是3个则是切块。

维度的分类

维度主要有4种类型,包括结构维、信息维、分区维和分类维。结构维最为普通,它包含具有层次结构的成员;信息维包含需要计算的属性;分区维用于信息的比较,如计划销售情况和实际销售情况;分类维用于根据维的属性来分组。此外,还有一些结构上比较特殊的维,如退化维和垃圾维等。

结构维

结构维表示在层次结构组成中的信息量度。下面是一些普通的结构维

  • 客户地理位置维

    • 这个维可提供一个根据客户所在地进行归类的层次结构。客户维的典型例子是“customer_city”、“customer_state”和“custmer_country”。这个维通常用于查看不同的地理位置在销售、利润和其他客户度量方面的不同。
  • 时间维

    • 可表明事件发生的时间。典型的时间维应该是年、月和日。
  • 销售人员地理位置维

    • 这个维可提供一个根据销售人员所在地域进行归类的层次结构。这个维通常用来查看工作在不同地域的销售人员的销售情况和利润等。
  • 产品维

    • 出售的产品。这个层次结构可能包括“product_name”、“product_brand”、“product_category”和“product_department”。这个维用来查看不同类别的产品的销售利润和其他指标。

    所有这些结构维都包含他们所在层次结构的属性。在结构维中层次是非常重要的,所以要在下面分别进行讨论。

信息维

信息维是计算字段建立的。用户也许想通过销售利润了解所有产品的销售总额。也许希望通过增加销售来获得丰厚的利润。然而,如果某一款商品降价销售,可能会发现销售量虽然很大,而利润却很小或几乎没有利润。从另一方面看,用户可能希望通过

要想在百度八亿网页的数据海洋中找到你所要的信息, 人工方式需要1200 多人年,而百度搜索技术不到1 秒钟。人 们被数据淹没,却渴望知识。商务智能技术已成为当今企业 获取竞争优势的源泉之一。商务智能通常被理解为将企业中 现有的数据转化为知识,帮助企业做出明智决策的IT工具集。 其中数据仓库、OLAP和数据挖掘技术是商务智能的重要组成 部分。商务智能的关键在于如何从众多来自不同企业运作系 统的数据中,提取有用数据,进行清理以保证数据的正确性, 然后经过抽取、转换、装载合并到一个企业级的数据仓库里, 从而得到企业数据的一个全局视图,并在此基础上利用适当 的查询分析、数据挖掘、OLAP等技术工具对其进行分析处理, 最终将知识呈现给管理者,为管理者的决策过程提供支持。 可见,数据仓库技术是商业智能系统的基础,在智能系统开 发过程中,星型模式设计又是数据仓库设计的基本概念之一。 星型模式是由位于中央的事实表和环绕在四周的维度表 组成的,事实表中的每一行与每个维度表的多行建立关系, 查询结果是通过将一个或者多个维度表与事实表结合之后产 生的,因此每一个维度表和事实表都有一个“一对多”的连 接关系,维度表的主键是事实表中的外键。随着企业交易量 的越来越多,星型模式中的事实表数据记录行数会不断增加, 而且交易数据一旦生成历史是不能改变的,即便不得不变动, 如对发现以前的错误数字做修改,这些修改后的数据也会作 为一行新纪录添加到事实表中。与事实表总是不断增加记录 的行数不同,维度表的变化不仅是增加记录的行数,而且据 需求不同维度表属性本身也会发生变化。本文着重讨论数据 仓库维度表的变化类型及其更新技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

掉进悬崖的狼

请博主喝杯奶茶

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值