[最大权闭合子图]太空飞行计划 网络流24题(2/24)

无序依赖。

注意最后输出方案时,即要输出最后的最大权闭合子图。

最大权闭合子图即最后还与S连通的点。

最后与S连通的点d一定不等于0(or-1,看写法了

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define INF (1e9)
const ll maxn=115,maxm=30005;
ll m,n,cnt,S,T;
ll w[maxn],cost[maxn],head[maxn];
struct node{
    ll to,ne,w;
}e[maxm];
void add(ll u,ll v,ll w){
    e[cnt]=(node){v,head[u],w};head[u]=cnt++;
    e[cnt]=(node){u,head[v],0};head[v]=cnt++;
}
queue<ll>q;
ll d[maxn];
ll bfs(){
    memset(d,0,sizeof(d));
    while(!q.empty()) q.pop();
    q.push(S);
    d[S]=1;
    while(!q.empty()){
        ll u=q.front();q.pop();
        if(u==T) break;//优化
        for(ll i=head[u];~i;i=e[i].ne){
            ll v=e[i].to;
            if(!e[i].w) continue;
            if(!d[v]) d[v]=d[u]+1,q.push(v);
        }
    }
    return d[T];
}

ll dfs(ll u,ll remain){
    if(u==T) return remain;
    ll use=0;
    for(ll &i=head[u];~i;i=e[i].ne){
        ll v=e[i].to;
        if(e[i].w&&remain&&d[v]==d[u]+1){
            ll flow=dfs(v,min(remain,e[i].w));
            use+=flow;remain-=flow;e[i].w-=flow;e[i^1].w+=flow;
        }
    }
    if(!use) d[u]=0;//优化
    return use;
}
ll rechead[maxn];
ll dinic(){
    ll ans=0;
    memcpy(rechead,head,sizeof(head));
    while(bfs()){
        while(1){
            ll tmp=dfs(S,INF);
            if(!tmp) break;
            ans+=tmp;
        }
        memcpy(head,rechead,sizeof(head));
    }
    return ans;
}
int main(){
    scanf("%lld%lld",&m,&n);
    memset(head,-1,sizeof(head));
    S=m+n+1;T=S+1;
    ll x,sum=0;
    for(ll i=1;i<=m;i++){
        scanf("%lld",&w[i]);
        sum+=w[i];
        add(S,i,w[i]);
        while(getchar()==' '){
            scanf("%lld",&x);
            add(i,x+m,INF);
        }
    }
    for(ll i=1;i<=n;i++){
        scanf("%lld",&x);
        add(i+m,T,x);
    }
    sum-=dinic();
    memcpy(head,rechead,sizeof(head));
    //求方案。选择的仪器必在最大权闭合子图内,故一定与S连通,所以d一定不是0
     for(ll i=1;i<=m+n;i++){
        if(d[i]){
            printf("%lld ",i>m?i-m:i);
        }
        if(i==m||i==n+m) printf("\n");
    }
    printf("%lld\n",sum);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值