抛硬币直到若干次(k次)连续正面向上的概率

问题描述

问题描述:抛一枚硬币,当出现连续的三次(或k次)正面向上的时候停止,问抛硬币的次数期望是多少?

说明

这个问题网上有很多答案,解释都不清楚,很多解释都误导他人,有一个稍微解释靠谱的,遂在这里把这个问题详细解答一下,这个题花了不少时间思考,转发请注明出处,(写的匆忙或许有错别字,不影响阅读)。
另外一个思路(其实跟这里我要讲的近似,只是求通项的时候先不用 E ( k − 1 ) E(k-1) E(k1)这样表示,而是用 N ( k − 1 ) N(k-1) N(k1)来表示,区别在于前者是表示的 k − 1 k-1 k1次向上时抛的次数的均值,后者表示的就是抛了 k − 1 k-1 k1次),两者得到的结果一致,这种思路可以看知乎-武同学的数学脑洞
再一个思路就是马尔科夫链求解了,这个我后面有空更新吧

解答过程

从期望的定义出发:设 x 1 , x 2 , x 3 , . . . , x n x_1,x_2,x_3,...,x_n x1,x2,x3,...,xn为离散型随机变量X的可能取值,其分布律为 p k = P { X = x k } p_k=P\{X=x_k\} pk=P{X=xk},则期望为:
E X = ∑ k = 1 ∞ x k p k EX=\sum_{k=1}^{\infty}x_kp_k EX=k=1xkpk
对于这个题,使用动态规划的思想,即假定我们要求的问题是当出现连续的 k k k次正面向上的时候停止,则需要抛硬币的次数的均值是多少?
假定连续出现 k − 1 k-1 k1次正面向上的期望是 E ( k − 1 ) E(k-1) E(k1),则我们现在只需要再进行下一次抛硬币,有两种情况,

  • 1) 抛的硬币正面向上,则达到要求,停止抛弃,此时抛的总次数是 E ( k − 1 ) + 1 E(k-1)+1 E(k1)+1,概率是1/2。概率之所以是1/2,是因为从 k − 1 k-1 k1次开始,最后的那次是正面的可能性是1/2。而题目问的是次数的期望,所以1/2是作用在所有次数上的,即 1 / 2 × ( E ( k − 1 ) + 1 ) 1/2\times(E(k-1)+1) 1/2×(E(k1)+1),而不是 1 / 2 × 1 1/2\times 1 1/2×1.
  • 2) 抛的硬币反面向上,没达到要求,则这个时候需要重新再抛,次数为现在已经抛的次数加之后出现都是正面的次数,即 E ( k − 1 ) + 1 + E ( k ) E(k-1)+1+E(k) E(k1)+1+E(k)。这种情况的概率也是1/2,即 1 / 2 × ( E ( k − 1 ) + 1 + E ( k ) ) 1/2\times(E(k-1)+1+E(k)) 1/2×(E(k1)+1+E(k))。这里需要说明的是,为何加 E ( k ) E(k) E(k)就可以了?难道不会出现抛的那次是反面,再次抛还是反面的情况?一定保证都是 k k k次正面吗?这里就需要理解 E ( k ) E(k) E(k)的含义了。 E ( k ) E(k) E(k)的意思是说,抛硬币,出现连续的 k k k次正面停止,问一共需要平均抛多少次?,所以 E ( k ) E(k) E(k)不是表示抛了k次且都是正面向上,而是抛了很多很多次,刚好出现k次正面向上,则对抛的次数取平均得到 E ( k ) E(k) E(k).

综上有:
E ( k ) = 1 / 2 × ( E ( k − 1 ) + 1 ) + 1 / 2 × ( E ( k − 1 ) + 1 + E ( k ) ) E(k)=1/2\times (E(k-1)+1)+1/2\times(E(k-1)+1+E(k)) E(k)=1/2×(E(k1)+1)+1/2×(E(k1)+1+E(k))
求得通项
E ( k ) = 2 × E ( k − 1 ) + 2 , k = 2 , 3 , 4... E(k)=2\times E(k-1)+2,k=2,3,4... E(k)=2×E(k1)+2k=2,3,4...
改为k从1开始(至少要考虑抛一次硬币,不能k=0)
E ( k + 1 ) = 2 × E ( k ) + 2 , k = 1 , 2 , 3 , 4... E(k+1)=2\times E(k)+2,k=1,2,3,4... E(k+1)=2×E(k)+2k=1,2,3,4...

通项有了,那么需要计算第一项才能得到后面的每一项。
E ( 1 ) E(1) E(1)表示连续抛硬币,当出现一次正面向上时停止,问平均需要抛多少次硬币?,那么我们就考虑正面向上的情况:
设“A表示抛硬币出现一次正面向上的情况”的抛硬币次数(注意是次数,不是概率)
x ( A ) = x ( 正 ) + x ( 反 正 ) + x ( 反 反 正 ) + x ( 反 反 反 正 ) + . . . x(A)=x(正)+x(反正)+x(反反正)+x(反反反正)+... x(A)=x()+x+x()+x()+...
这里 x x x表示恰好出现正面时抛的次数,如 x ( 正 ) x(正) x()表示抛一次恰好出现正面,只抛一次
x ( 反 正 ) x(反正) x()表示一次反,第二次才正,抛了2次,所以 x ( 反 正 ) = 2 x(反正)=2 x()=2
以此类推…
结合一开始讲的期望的定义:
E X = ∑ k = 1 ∞ x k p k EX=\sum_{k=1}^{\infty}x_kp_k EX=k=1xkpk
容易得到
E ( 1 ) = E ( A ) = 1 / 2 × 1 + ( 1 / 2 ) 2 × 2 + ( 1 / 2 ) 3 × 3 + . . . + ( 1 / 2 ) n × n + . . . , n → ∞ E(1)=E(A)=1/2\times 1+(1/2)^2\times 2+(1/2)^3\times 3+...+(1/2)^n\times n+..., n\to \infty E(1)=E(A)=1/2×1+(1/2)2×2+(1/2)3×3+...+(1/2)n×n+...,n
上面那个很容易求,使用错位相减法法即可,即 1 / 2 × 1/2\times 1/2×上式再得到一列
1 / 2 × E ( 1 ) = ( 1 / 2 ) 2 × 1 + ( 1 / 2 ) 3 × 2 + . . . + ( 1 / 2 ) n × ( n − 1 ) + . . . , n → ∞ 1/2\times E(1)=(1/2)^2\times 1+(1/2)^3\times 2+...+(1/2)^n\times (n-1)+..., n\to \infty 1/2×E(1)=(1/2)2×1+(1/2)3×2+...+(1/2)n×(n1)+...,n
两式相减即可得到 E ( 1 ) = 2 E(1)=2 E(1)=2,现在对通式改写,即
E ( k + 1 ) + 2 = 2 ( E ( k ) + 2 ) E(k+1)+2=2(E(k)+2) E(k+1)+2=2(E(k)+2)
这正是等比数列,很容易最终得到通式
E ( n ) = 2 ( n + 1 ) − 2 E(n)=2^{(n+1)}-2 E(n)=2(n+1)2
所以原本的问题答案为:
E ( 3 ) = 14 E(3)=14 E(3)=14

  • 10
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值