SPOJ - GSS1 Can you answer these queries I 线段树最大子段和

本文介绍了一种使用线段树数据结构求解区间最大子段和问题的方法,通过记录区间的前缀最大子段和、后缀最大子段和、区间和和区间最大子段和,实现查询复杂度O(logn)。文章提供了详细的算法实现代码,包括初始化、更新和查询操作。
摘要由CSDN通过智能技术生成

线段树求最大子段和。
对于一个区间,记录它的前缀最大子段和、后缀最大子段和、区间和、和区间最大子段和,对于每个节点,更新前缀和后缀最大子段和,则当前区间的最大子段和为左区间后缀最大值+右区间前缀最大值和左右区间最大子段和的最大值。
查询复杂度 O ( l o g n ) O(logn) O(logn)

#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<stack>
#include<cstdio>
#include<vector>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<string.h>
#include<iostream>
#include<algorithm>

#define ll long long
#define Max(a, b) ((a) > (b) ? (a) : (b))
const long long INF = 1e18;
const int mod = 1e9 + 7;
const int N = 5e4 + 10;
typedef std::pair<int, int> pii;
typedef std::pair<ll, ll> pll;

ll gcd(ll p, ll q) { return q == 0 ? p : gcd(q, p % q); }

using namespace std;
int n, a[N];
struct node {
    int l, r;
    ll s, v, pre, suf;
} tree[N << 2];

inline void pushup(int id) {
    int l = id << 1, r = id << 1 | 1;
    tree[id].s = tree[l].s + tree[r].s;
    tree[id].v = max(max(tree[l].v, tree[r].v), tree[l].suf + tree[r].pre);
    tree[id].pre = max(tree[l].pre, tree[l].s + tree[r].pre);
    tree[id].suf = max(tree[r].suf, tree[l].suf + tree[r].s);
}

void build(int id, int l, int r) {
    tree[id].l = l;
    tree[id].r = r;
    if (l == r) {
        tree[id].v = tree[id].s = tree[id].pre = tree[id].suf = a[l];
        return;
    }
    int mid = (l + r) >> 1;
    build(id << 1, l, mid);
    build(id << 1 | 1, mid + 1, r);
    pushup(id);
}

node query(int id, int ql, int qr) {
    int l = tree[id].l, r = tree[id].r;
    if (ql <= l && qr >= r)
        return tree[id];
    int mid = (l + r) >> 1;
    if (qr <= mid)
        return query(id << 1, ql, qr);
    else if (ql > mid)
        return query(id << 1 | 1, ql, qr);
    else {
        node ans, ls = query(id << 1, ql, qr), rs = query(id << 1 | 1, ql, qr);
        ans.s = ls.s + rs.s;
        ans.v = max(max(ls.v, rs.v), ls.suf + rs.pre);
        ans.pre = max(ls.pre, ls.s + rs.pre);
        ans.suf = max(rs.suf, rs.s + ls.suf);
        return ans;
    }
}

int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cin >> n;
    for (int i = 1; i <= n; i++)
        cin >> a[i];
    build(1,1,n);
    int m, x, y;
    cin >> m;
    for (int i = 1; i <= m; i++) {
        cin >> x >> y;
        cout << query(1, x, y).v << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值