Can you answer these queries II 【SPOJ - GSS2】【去重最大子段和】

SPOJ-GSS2 题目链接


  这道题的思维有点像多个dp同时进行的样子,我们去判断一个子段和是否是最大的,是不是要和之前的做比较如果大于之前的最大子段和就可以去更新掉,这个思维先存在这,后边会用到的。

  然后,再讲一下题意,这道题的题意是真的有毒啊……我WA了接近24个小时,20发了,还在猜…… 最后想通了,这道题的题意是这样的:

  N个a[ i ],我们要去取这样的一个区间,例如“4 1 2 4”那么,最大子段和就是“4 + 1 + 2 = 7”这样的去重,然后“4 1 1 2 4 2”这段区间的最大子段和呢,就是“4 + 1 + 2 = 7”也是一样的。

  好了,大致理解到题意之后,讲解一下思路了:

  我们可以维护每个点作为起始点,也就是我们把1,2,3,4,5,……,N分别看成每个子段的起点,那么是不是只需要维护最长前缀和即可?这样就能避免影响了,但是,同时要去重,那么不就是我们给区间上的每个点加a[ i ],就是给[ pre[i] + 1, i ]去进行加a[ i ]的操作,然后看现在加进来这个a[ i ]对于前缀最大值的影响。

a[1] + a[2] + …… + a[ j ]

a[2] + a[3] + …… + a[ j ]

……

a[ j - 1 ] + a[ j ]

a[ j ]

这样的一个过程我们维护上面的这么多前缀和的每个的前缀最大值。

9
4 -2 -2 3 -1 -4 2 2 -6
1
2 7
ans:3
5
1 2 3 4 5
1
5 5
ans:5
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <unordered_map>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f3f3f3f3f
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define max3(a, b, c) max(a, max(b, c))
#define max4(a, b, c, d) max(max(a, b), max(c, d))
#define max6(a, b, c, d, f, g) max(max3(a, b, c), max3(d, f, g))
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
const int maxN = 1e5 + 7;
int N, M, a[maxN], pre[maxN];
ll out[maxN];
unordered_map<int, int> mp;
struct Ques
{
    int l, r, id;
}qes[maxN];
bool cmp(Ques e1, Ques e2) { return e1.r < e2.r; }
struct node
{
    bool op;    //是否改变过,lazy的存在性
    ll his_max, all, lazy_max, lazy_all;
    node(ll a=0, ll b=0, ll c=0, ll d=0, bool flag = false):his_max(a), all(b), lazy_max(c), lazy_all(d), op(flag) {}
    friend bool operator < (node e1, node e2) { return e1.his_max < e2.his_max; }
}tree[maxN<<2];
inline void pushup(int rt)
{
    tree[rt].all = max(tree[lsn].all, tree[rsn].all);
    tree[rt].his_max = max(tree[lsn].his_max, tree[rsn].his_max);
}
inline void pushdown(int rt)
{
    if(tree[rt].op)
    {
        tree[lsn].his_max = max(tree[lsn].his_max, tree[lsn].all + tree[rt].lazy_max);
        tree[rsn].his_max = max(tree[rsn].his_max, tree[rsn].all + tree[rt].lazy_max);
        
        tree[lsn].lazy_max = max(tree[lsn].lazy_max, tree[lsn].lazy_all + tree[rt].lazy_max);
        tree[rsn].lazy_max = max(tree[rsn].lazy_max, tree[rsn].lazy_all + tree[rt].lazy_max);
        
        tree[lsn].lazy_all += tree[rt].lazy_all;
        tree[rsn].lazy_all += tree[rt].lazy_all;
        
        tree[lsn].all += tree[rt].lazy_all;
        tree[rsn].all += tree[rt].lazy_all;
        
        tree[lsn].op = true;
        tree[rsn].op = true;
        
        tree[rt].lazy_all = 0;
        tree[rt].lazy_max = 0;
        tree[rt].op = false;
    }
}
void update(int rt, int l, int r, int ql, int qr, ll val)
{
    if(ql <= l && qr >= r)
    {
        tree[rt].all += val;
        tree[rt].his_max = max(tree[rt].his_max, tree[rt].all);
        tree[rt].op = true;
        tree[rt].lazy_all += val;
        tree[rt].lazy_max = max(tree[rt].lazy_max, tree[rt].lazy_all);
        return;
    }
    pushdown(rt);
    int mid = HalF;
    if(qr <= mid) update(QL, val);
    else if(ql > mid) update(QR, val);
    else { update(QL, val); update(QR, val); }
    pushup(rt);
}
node query(int rt, int l, int r, int ql, int qr)
{
    if(ql <= l && qr >= r) return tree[rt];
    pushdown(rt);
    int mid = HalF;
    if(qr <= mid) return query(QL);
    else if(ql > mid) return query(QR);
    else return max(query(QL), query(QR));
}
int main()
{
    scanf("%d", &N);
    for(int i=1; i<=N; i++)
    {
        scanf("%d", &a[i]);
        pre[i] = mp[a[i]];
        mp[a[i]] = i;
    }
    scanf("%d", &M);
    for(int i=1; i<=M; i++)
    {
        scanf("%d%d", &qes[i].l, &qes[i].r);
        qes[i].id = i;
    }
    sort(qes + 1, qes + M + 1, cmp);
    int j=1;
    for(int q=1; q <= M; q++)
    {
        while(j <= qes[q].r)
        {
            update(1, 1, N, pre[j] + 1, j, a[j]);
            j++;
        }
        out[qes[q].id] = query(1, 1, N, qes[q].l, qes[q].r).his_max;
    }
    for(int i=1; i<=M; i++) printf("%lld\n", out[i]);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wuliwuliii

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值