每日一题-回文平方

回文数是指数字从前往后读和从后往前读都相同的数字。

例如数字 12321 就是典型的回文数字。

现在给定你一个整数 B,请你判断 1∼300 之间的所有整数中,有哪些整数的平方转化为 B 进制后,其 B 进制表示是回文数字。

输入格式

一个整数 B。

输出格式

每行包含两个在 B 进制下表示的数字。

第一个表示满足平方值转化为 B 进制后是回文数字那个数,第二个数表示第一个数的平方。

所有满足条件的数字按从小到大顺序依次输出。

数据范围

2≤B≤20,

对于大于 9 的数字,用 A 表示 10,用 B 表示 11,以此类推。

输入样例:

10

输出样例:

1 1
2 4
3 9
11 121
22 484
26 676
101 10201
111 12321
121 14641
202 40804
212 44944
264 69696

下面解读一下题意

总的来说就是给了一个数字B,你要判断在1-300中,哪个数字的平方在B进制下是个回文数,将这个数字和他的平方转换成B进制之后进行输出

思路

数据范围很小,不用太关心时间复杂度的问题,主要是过程的实现
进制转换我们用短除法来进行操作。
转换之后双指针判断是否为回文即可

进制转换:

string base(int n, int b)
{
    string num;
    while(n)
        num += get(n % b), n /= b;	//可用7/2短除法来理解
    reverse(num.begin(), num.end());	//短除之后的规则,是从下往上写的
    return num;
}

char get(int n)
{
    if(n <= 9)   return n + '0';
    return n - 10 + 'A';
}

判断是否为回文数

bool check(string num)
{
    for(int i = 0, j = num.size() - 1; i < j ; i ++, j --)
        if(num[i] != num[j])
            return false;
    return true;
}

总的代码如下:

#include <iostream>
#include <algorithm>
#include <string>

using namespace std;

char get(int n)
{
    if(n <= 9)   return n + '0';
    return n - 10 + 'A';
}

bool check(string num)
{
    for(int i = 0, j = num.size() - 1; i < j ; i ++, j --)
        if(num[i] != num[j])
            return false;
    return true;
}

string base(int n, int b)
{
    string num;
    while(n)
        num += get(n % b), n /= b;
    reverse(num.begin(), num.end());
    return num;
}

int main()
{
    int b;
    cin >> b;
    for(int i = 1; i <= 300; i ++)
    {
        auto num = base(i * i, b);
        if(check(num))
            cout << base(i, b) << ' ' << num << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值