回文数是指数字从前往后读和从后往前读都相同的数字。
例如数字 12321 就是典型的回文数字。
现在给定你一个整数 B,请你判断 1∼300 之间的所有整数中,有哪些整数的平方转化为 B 进制后,其 B 进制表示是回文数字。
输入格式
一个整数 B。
输出格式
每行包含两个在 B 进制下表示的数字。
第一个表示满足平方值转化为 B 进制后是回文数字那个数,第二个数表示第一个数的平方。
所有满足条件的数字按从小到大顺序依次输出。
数据范围
2≤B≤20,
对于大于 9 的数字,用 A 表示 10,用 B 表示 11,以此类推。
输入样例:
10
输出样例:
1 1
2 4
3 9
11 121
22 484
26 676
101 10201
111 12321
121 14641
202 40804
212 44944
264 69696
下面解读一下题意
总的来说就是给了一个数字B,你要判断在1-300中,哪个数字的平方在B进制下是个回文数,将这个数字和他的平方转换成B进制之后进行输出
思路
数据范围很小,不用太关心时间复杂度的问题,主要是过程的实现
进制转换我们用短除法来进行操作。
转换之后双指针判断是否为回文即可
进制转换:
string base(int n, int b)
{
string num;
while(n)
num += get(n % b), n /= b; //可用7/2短除法来理解
reverse(num.begin(), num.end()); //短除之后的规则,是从下往上写的
return num;
}
char get(int n)
{
if(n <= 9) return n + '0';
return n - 10 + 'A';
}
判断是否为回文数
bool check(string num)
{
for(int i = 0, j = num.size() - 1; i < j ; i ++, j --)
if(num[i] != num[j])
return false;
return true;
}
总的代码如下:
#include <iostream>
#include <algorithm>
#include <string>
using namespace std;
char get(int n)
{
if(n <= 9) return n + '0';
return n - 10 + 'A';
}
bool check(string num)
{
for(int i = 0, j = num.size() - 1; i < j ; i ++, j --)
if(num[i] != num[j])
return false;
return true;
}
string base(int n, int b)
{
string num;
while(n)
num += get(n % b), n /= b;
reverse(num.begin(), num.end());
return num;
}
int main()
{
int b;
cin >> b;
for(int i = 1; i <= 300; i ++)
{
auto num = base(i * i, b);
if(check(num))
cout << base(i, b) << ' ' << num << endl;
}
return 0;
}