Spark性能优化:资源调优篇

       近日在搞xgboost分布式在spark上的运行情况,发现其运行速度较慢,便查找原因,下面这篇博客诗写得很好的一篇,转载以备后用!

在开发完Spark作业之后,就该为作业配置合适的资源了。Spark的资源参数,基本都可以在spark-submit命令中作为参数设置。很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置。资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢;或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常。总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行。因此我们必须对Spark作业的资源使用原理有一个清晰的认识,并知道在Spark作业运行过程中,有哪些资源参数是可以设置的,以及如何设置合适的参数值。

1、Spark作业基本运行原理

 

      详细原理见上图。我们使用spark-submit提交一个Spark作业之后,这个作业就会启动一个对应的Driver进程。根据你使用的部署模式(deploy-mode)不同,Driver进程可能在本地启动,也可能在集群中某个工作节点上启动。Driver进程本身会根据我们设置的参数,占有一定数量的内存和CPU core。而Driver进程要做的第一件事情,就是向集群管理器(可以是Spark Standalone集群,也可以是其他的资源管理集群,美团•大众点评使用的是YARN作为资源管理集群)申请运行Spark作业需要使用的资源,这里的资源指的就是Executor进程。YARN集群管理器会根据我们为Spark作业设置的资源参数,在各个工作节点上,启动一定数量的Executor进程,每个Executor进程都占有一定数量的内存和CPU core。

  在申请到了作业执行所需的资源之后,Driver进程就会开始调度和执行我们编写的作业代码了。Driver进程会将我们编写的Spark作业代码分拆为多个stage,每个stage执行一部分代码片段,并为每个stage创建一批task,然后将这些task分配到各个Executor进程中执行。task是最小的计算单元,负责执行一模一样的计算逻辑(也就是我们自己编写的某个代码片段),只是每个task处理的数据不同而已。一个stage的所有task都执行完毕之后,会在各个节点本地的磁盘文件中写入计算中间结果,然后Driver就会调度运行下一个stage。下一个stage的task的输入数据就是上一个stage输出的中间结果。如此循环往复,直到将我们自己编写的代码逻辑全部执行完,并且计算完所有的数据,得到我们想要的结果为止。

  Spark是根据shuffle类算子来进行stage的划分。如果我们的代码中执行了某个shuffle类算子(比如reduceByKey、join等),那么就会在该算子处,划分出一个stage界限来。可以大致理解为,shuffle算子执行之前的代码会被划分为一个stage,shuffle算子执行以及之后的代码会被划分为下一个stage。因此一个stage刚开始执行的时候,它的每个task可能都会从上一个stage的task所在的节点,去通过网络传输拉取需要自己处理的所有key,然后对拉取到的所有相同的key使用我们自己编写的算子函数执行聚合操作(比如reduceByKey()算子接收的函数)。这个过程就是shuffle。

  当我们在代码中执行了cache/persist等持久化操作时,根据我们选择的持久化级别的不同,每个task计算出来的数据也会保存到Executor进程的内存或者所在节点的磁盘文件中。

  因此Executor的内存主要分为三块:第一块是让task执行我们自己编写的代码时使用,默认是占Executor总内存的20%;第二块是让task通过shuffle过程拉取了上一个stage的task的输出后,进行聚合等操作时使用,默认也是占Executor总内存的20%;第三块是让RDD持久化时使用,默认占Executor总内存的60%。

  task的执行速度是跟每个Executor进程的CPU core数量有直接关系的。一个CPU core同一时间只能执行一个线程。而每个Executor进程上分配到的多个task,都是以每个task一条线程的方式,多线程并发运行的。如果CPU core数量比较充足,而且分配到的task数量比较合理,那么通常来说,可以比较快速和高效地执行完这些task线程。

  以上就是Spark作业的基本运行原理的说明,大家可以结合上图来理解。理解作业基本原理,是我们进行资源参数调优的基本前提。

2、资源参数调优

      了解完了Spark作业运行的基本原理之后,对资源相关的参数就容易理解了。所谓的Spark资源参数调优,其实主要就是对Spark运行过程中各个使用资源的地方,通过调节各种参数,来优化资源使用的效率,从而提升Spark作业的执行性能。以下参数就是Spark中主要的资源参数,每个参数都对应着作业运行原理中的某个部分,我们同时也给出了一个调优的参考值。

num-executors

  参数说明:该参数用于设置Spark作业总共要用多少个Executor进程来执行。Driver在向YARN集群管理器申请资源时,YARN集群管理器会尽可能按照你的设置来在集群的各个工作节点上,启动相应数量的Executor进程。这个参数非常之重要,如果不设置的话,默认只会给你启动少量的Executor进程,此时你的Spark作业的运行速度是非常慢的。

  参数调优建议:每个Spark作业的运行一般设置50~100个左右的Executor进程比较合适,设置太少或太多的Executor进程都不好。设置的太少,无法充分利用集群资源;设置的太多的话,大部分队列可能无法给予充分的资源。

executor-memory

  参数说明:该参数用于设置每个Executor进程的内存。Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常,也有直接的关联。

  参数调优建议:每个Executor进程的内存设置4G~8G较为合适。但是这只是一个参考值,具体的设置还是得根据不同部门的资源队列来定。可以看看自己团队的资源队列的最大内存限制是多少,num-executors乘以executor-memory,就代表了你的Spark作业申请到的总内存量(也就是所有Executor进程的内存总和),这个量是不能超过队列的最大内存量的。此外,如果你是跟团队里其他人共享这个资源队列,那么申请的总内存量最好不要超过资源队列最大总内存的1/3~1/2,避免你自己的Spark作业占用了队列所有的资源,导致别的同学的作业无法运行。

executor-cores

  参数说明:该参数用于设置每个Executor进程的CPU core数量。这个参数决定了每个Executor进程并行执行task线程的能力。因为每个CPU core同一时间只能执行一个task线程,因此每个Executor进程的CPU core数量越多,越能够快速地执行完分配给自己的所有task线程。

  参数调优建议:Executor的CPU core数量设置为2~4个较为合适。同样得根据不同部门的资源队列来定,可以看看自己的资源队列的最大CPU core限制是多少,再依据设置的Executor数量,来决定每个Executor进程可以分配到几个CPU core。同样建议,如果是跟他人共享这个队列,那么num-executors * executor-cores不要超过队列总CPU core的1/3~1/2左右比较合适,也是避免影响其他同学的作业运行。

driver-memory

  参数说明:该参数用于设置Driver进程的内存。

  参数调优建议:Driver的内存通常来说不设置,或者设置1G左右应该就够了。唯一需要注意的一点是,如果需要使用collect算子将RDD的数据全部拉取到Driver上进行处理,那么必须确保Driver的内存足够大,否则会出现OOM内存溢出的问题。

spark.default.parallelism

  参数说明:该参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。

  参数调优建议:Spark作业的默认task数量为500~1000个较为合适。很多同学常犯的一个错误就是不去设置这个参数,那么此时就会导致Spark自己根据底层HDFS的block数量来设置task的数量,默认是一个HDFS block对应一个task。通常来说,Spark默认设置的数量是偏少的(比如就几十个task),如果task数量偏少的话,就会导致你前面设置好的Executor的参数都前功尽弃。试想一下,无论你的Executor进程有多少个,内存和CPU有多大,但是task只有1个或者10个,那么90%的Executor进程可能根本就没有task执行,也就是白白浪费了资源!因此Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍较为合适,比如Executor的总CPU core数量为300个,那么设置1000个task是可以的,此时可以充分地利用Spark集群的资源。

spark.storage.memoryFraction

  参数说明:该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。也就是说,默认Executor 60%的内存,可以用来保存持久化的RDD数据。根据你选择的不同的持久化策略,如果内存不够时,可能数据就不会持久化,或者数据会写入磁盘。

  参数调优建议:如果Spark作业中,有较多的RDD持久化操作,该参数的值可以适当提高一些,保证持久化的数据能够容纳在内存中。避免内存不够缓存所有的数据,导致数据只能写入磁盘中,降低了性能。但是如果Spark作业中的shuffle类操作比较多,而持久化操作比较少,那么这个参数的值适当降低一些比较合适。此外,如果发现作业由于频繁的gc导致运行缓慢(通过spark web ui可以观察到作业的gc耗时),意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。

spark.shuffle.memoryFraction

  参数说明:该参数用于设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能。

  参数调优建议:如果Spark作业中的RDD持久化操作较少,shuffle操作较多时,建议降低持久化操作的内存占比,提高shuffle操作的内存占比比例,避免shuffle过程中数据过多时内存不够用,必须溢写到磁盘上,降低了性能。此外,如果发现作业由于频繁的gc导致运行缓慢,意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。
资源参数的调优,没有一个固定的值,需要同学们根据自己的实际情况(包括Spark作业中的shuffle操作数量、RDD持久化操作数量以及spark web ui中显示的作业gc情况),同时参考本篇文章中给出的原理以及调优建议,合理地设置上述参数。

3、资源参数参考示例

      以下是一份spark-submit命令的示例,大家可以参考一下,并根据自己的实际情况进行调节:

./bin/spark-submit \
  --master yarn-cluster \
  --num-executors 100 \
  --executor-memory 6G \
  --executor-cores 4 \
  --driver-memory 1G \
  --conf spark.default.parallelism=1000 \
  --conf spark.storage.memoryFraction=0.5 \
  --conf spark.shuffle.memoryFraction=0.3 \

 

一、Spark性能优化:开发调优篇

二、Spark性能优化:资源调优篇

三、Spark性能优化:数据倾斜调优

四、Spark性能优化:shuffle调优

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Spark性能优化指南的基础主要包括开发调优资源调优两个方面,其中设置参数是资源调优的重要内容。 在开发调优方面,需要注意以下几点: 1. 避免使用不必要的shuffle操作,因为shuffle操作会导致数据的重新分区和网络传输,从而影响性能。 2. 尽量使用RDD的转换操作,而不是行动操作,因为行动操作会触发计算并返回结果,而转换操作只是定义了计算过程,不会立即执行。 3. 使用广播变量来减少数据的传输,广播变量可以将一个只读变量缓存到每个节点上,避免重复传输。 在资源调优方面,需要注意以下几点: 1. 设置合适的内存分配比例,可以通过调整spark.driver.memory和spark.executor.memory参数来实现。 2. 设置合适的并行度,可以通过调整spark.default.parallelism参数来实现。 3. 设置合适的序列化方式,可以通过调整spark.serializer和spark.kryoserializer.buffer.max参数来实现。 4. 设置合适的存储级别,可以通过调整RDD的存储级别来实现。 总之,通过合理设置参数和优化代码,可以提高Spark的性能和效率。 ### 回答2: Spark性能优化是一个非常复杂的过程,它通常被视为一项高级技能。在Spark的使用过程中,开发调优资源调优都是非常重要的,这文章将重点介绍一些基础的内容,包括开发调优资源调优中的设置参数。 首先,我们来看一下开发调优。在Spark中,开发者需要注意一些代码实践,以确保代码的性能最优。以下是一些开发调优的最佳实践: 1.避免使用lambda表达式,特别是在数据集或数据框的操作中。虽然lambda表达式在编码过程中非常方便,但它们往往会导致不必要的对象和内存分配,从而降低了性能。 2.尽可能地使用原语而不是高级API。原语比高级API实现更快,同时也具有更多的控制力。例如,使用RDD代替DataFrame可能会带来更好的性能。 3.使用宽依赖(例如reduceByKey)代替窄依赖(例如groupByKey)。宽依赖通过并行化来提高执行效率,而窄依赖则依赖于串行执行。 4.尽可能的避免使用全局变量或静态变量,因为它们会使Spark的并行性降低并导致性能下降。 接下来,我们将讨论资源调优中设置参数的相关内容。在Spark资源调优中,设置参数是非常重要的,因为它们可以帮助我们优化内存、CPU、网络等资源的使用,从而实现更好的性能。 1.调整executor内存大小。这是最基本的调优步骤,executor内存越大,Spark可以处理的数据量就越大,从而带来更好的性能。通常,设置executor内存为节点可用内存大小的三分之一是比较合理的。 2.调整shuffle分区数。调整shuffle分区数对于网络和I/O使用非常重要。通常情况下,每个CPU内核的shuffle分区数应该大约为2-3个。 3.调整并行度。并行度是指在Spark上运行的任务和数据的并发程度。较高的并行度可以提高Spark的性能。通常情况下,并行度应该设置为CPU内核数的两倍以上。 4.调整序列化格式。可以通过改变序列化格式来提高性能,比如使用Kryo而不是默认的Java序列化格式。Kryo在序列化大型对象时比Java序列化更快。 综上所述,开发调优资源调优是优化Spark性能的两个非常关键的方面。通过遵循最佳实践和设置合适的参数,可以使Spark应用程序在性能和资源使用方面发挥出最大的潜力,提高生产力和成果。 ### 回答3: Spark是一种强大的数据处理框架,需要高效的性能来完成各种任务。本文章将介绍一些关键的Spark性能优化指南——基础,包括开发调优资源调优和设置参数。 开发调优 1. 使用高效的算法和数据结构 不同的算法和数据结构对于Spark作业的性能有着巨大的影响。了解每个任务所需的计算复杂度和数据大小,并对其进行优化是非常重要的。 2. 将代码逻辑转换为RDD操作 RDD操作是Spark的核心概念之一。将代码逻辑转换为RDD操作可以大幅提升Spark的性能表现。因此,应该尽量使用Spark提供的各种高级API来进行开发,而不是去编写过于冗长的自定义代码。 3. 减小内存开销 为了让Spark的性能保持稳定,开发者应该尽量减小内存占用。这包括压缩数据、使用序列化器等等。 资源调优 1. 配置适当的并行度 Spark作业的并行度决定了任务能够同时处理的数据量。错误的并行度设置可能会导致任务成功率降低或者资源利用不充分的情况。因此,开发者需要通过多次试验来找到适合自己任务的并行度。 2. 调整JVM内存 JVM内存的大小对于Spark作业的性能有着很大的影响。如果JVM内存设置过小,可能会导致堆的内存不足。反之,如果设置过大,可能会导致垃圾回收时间变长。因此,开发者应该根据任务的需求来调整JVM内存的大小。 设置参数 1. 启用动态分区(spark.sql.shuffle.partitions) 设置动态分区可以让Spark自动根据数据量来设置操作的分区数,从而提高作业性能。 2. 启用动态分配内存(spark.shuffle.service.enabled) Spark默认会预留50%的堆内存用于垃圾回收。但是对于内存资源较为紧缺的情况,这可能会影响到作业的性能。开启动态分配内存可以让Spark自动调整内存的使用率,优化作业的性能。 总结 本文章介绍了Spark性能优化的基础,包括开发调优资源调优和参数设置。这些方法可以极大地提高Spark作业的性能表现。然而,Spark性能优化是一个细节精益工程,需要开发者不断进行优化和调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值