排序:
默认
按更新时间
按访问量

那些你无比崇拜的厉害人,是如何建构知识体系的

那些你无比崇拜的厉害人,是如何建构知识体系的? 2018-04-04 六合同风 文 | Lachel 高效思维达人,知识管理专家,深度思考践行者,领英、36氪特约作家 来源 | L先生说(ID:lxianshengmiao) 这是我总结的“知识体系矩阵”。它有 9 个元素,分别代表了...

2018-04-04 15:07:28

阅读数:187

评论数:0

(论文阅读笔记1)Collaborative Metric Learning(二)(WWW2017)

三、协同度量学习    这一部分,我们讨论CML作为一种更自然的方法获得关联关系。CML的思路是这样的:我们在已知正例关系的user-item集合S\mathcal{S}上建立一个隐性反馈模型,并且学习user-item的距离作为他们的关系。学习到的距离使得S\mathcal{S}中的对更加紧密,...

2017-08-20 17:33:02

阅读数:408

评论数:0

(论文阅读笔记1)Collaborative Metric Learning(一)(WWW2017)

一、摘要    度量学习算法产生的距离度量捕获数据之间的重要关系。这里,我们将度量学习和协同过滤联系起来,提出了协同度量学习(CML),它可以学习出一个共同的度量空间来编码用户偏好和user-user 和 item-item的相似度。二、背景2.1 Metric Learning     令χ={...

2017-07-31 22:38:50

阅读数:615

评论数:2

深入理解simhash原理

一、LSH 介绍    LSH(Locality sensitive hashing)是局部敏感性hashing,它与传统的hash是不同的。传统hash的目的是希望得到O(1)的查找性能,将原始数据映射到相应的桶内。     LSH的基本思想是将空间中原始数据相邻的2个数据点通过映射或者投影变...

2017-07-30 11:04:48

阅读数:449

评论数:0

实时重复文章识别——SimHash

一、背景介绍    在前边的文章中,我们采用的是用google的Doc2Vec模型来识别重复文章的,从线上运行的效果来看,它的准确率是比较高的。当然,这是建立在把所有的文章都当做训练数据来训练Doc2Vec模型的基础上的,它推断出一篇文章的向量之后再去做相似计算的效果是不太好的。况且,训练模型的耗...

2017-06-24 11:07:40

阅读数:568

评论数:0

Doc2Vec训练相似文章识别模型

一、需求描述     由于在平台上发布的文章是来源于不同渠道和作者的,发布的文章也存在一定程度上的抄袭或者太相似。为了避免对用户体验造成影响,避免不必要的文章费用支出,需要识别出哪些文章是相似的。数据源是若干文章(中文),初步选择方法为利用doc2vec模型,它类似于word2vec,下面就让我们...

2017-05-14 10:47:44

阅读数:1298

评论数:0

最优化学习笔记(二十)——全局搜索算法

一、引言    前边的博文我们讨论过一些迭代算法,包括梯度方法、牛顿法、共轭梯度法和拟牛顿法,能够从初始点出发,产生一个迭代序列,但是往往这些迭代序列只能收敛到局部极小点,而且这些迭代方法需要计算目标函数的一阶导数(牛顿法还需计算二阶导数)。从本节开始,讨论一些全局搜索算法,这些方法只需要计算目标...

2017-04-15 10:21:14

阅读数:1786

评论数:0

Spark下的word2vec模型训练

一、引言    前边一节介绍了Word2Vec模型训练同义词,那么在大数据量的情况下,我们自然想到了用spark来进行训练。下面就介绍我们是如何实现spark上的模型训练。二、分词    模型训练的输入是分好词的语料,那么就得实现spark上的分词。def split(jieba_list, it...

2017-03-20 20:24:35

阅读数:2554

评论数:0

Word2Vec训练同义词模型

一、需求描述     业务需求的目标是识别出目标词汇的同义词和相关词汇,如下为部分目标词汇(主要用于医疗问诊): 尿 痘痘 发冷 呼吸困难 恶心 数据源是若干im数据,那么这里我们选择google 的word2vec模型来训练同义词和相关词。二、数据处理    数据处...

2017-03-05 11:27:45

阅读数:4182

评论数:4

Java陷阱(一)——ArrayList.asList

一、问题代码    话不多说,直接上问题代码:package com.pajk.recsys.dk.test;import java.util.ArrayList; import java.util.Arrays; import java.util.List;import com.pajk.rec...

2017-02-17 17:26:56

阅读数:423

评论数:0

最优化学习笔记(十九)——拟牛顿法(5)BFGS算法

一、BFGS算法的更新公式    为了推导BFGS算法,需要用到对偶或者互补的概念,前边已经讨论过hessian矩阵逆矩阵的近似矩阵需要满足以下条件: Hk+1Δg(i)=Δx(i)0≤i≤k \boldsymbol{H}_{k+1} \Delta\boldsymbol{g}^{(i)} = \...

2017-02-12 10:34:08

阅读数:2594

评论数:0

Optimization inequalities cheatsheet

This article is from http://fa.bianp.net/blog/2017/optimization-inequalities-cheatsheet/, just record it.Most proofs in optimization consist in using...

2017-01-17 12:55:03

阅读数:267

评论数:0

最优化学习笔记(十八)——拟牛顿法(4)DFP算法

秩2算法可以保证在任意第kk步迭代下, 只要一维搜索是精确的,近似矩阵Hk\boldsymbol{H}_k就是正定的。DFP算法 令k=0k=0,选择初始点x(0)\boldsymbol{x}^{(0)},任意选择一个堆成正定实矩阵H0\boldsymbol{H}_0。 如果g(k)=0\bold...

2017-01-15 11:21:27

阅读数:949

评论数:0

最优化学习笔记(十七)——拟牛顿法(3)

秩1修正公式    在秩1修正公式中,修正项为αkz(k)z(k)T,αk∈R,z(k)∈Rn\alpha_k\boldsymbol{z}^{(k)}\boldsymbol{z}^{(k)T}, \alpha_k \in \mathbb{R}, \boldsymbol{z}^{(k)} \in \...

2017-01-08 14:43:52

阅读数:585

评论数:0

最优化学习笔记(十六)——拟牛顿法(2)

Hessian矩阵逆矩阵的近似一、拟牛顿法的基本思路    令H0,H1,H2,…\boldsymbol{H_0,H_1, H_2}, \dots表示Hessian矩阵逆矩阵F(x(k))−1\boldsymbol{F}(\boldsymbol{x}^{(k)})^{-1}的一系列近似矩阵。我们要...

2017-01-01 11:36:45

阅读数:459

评论数:0

最优化学习笔记(十五)——拟牛顿法(1)

拟牛顿法分为五部分来讲,本文这部分作为引言,第二部分讲Hessian矩阵逆矩阵的近似,第三部分秩1修正公式,第四部分为DFP算法,最后BFGS算法。     牛顿法是一种具有较高实用性的优化问题的求解方法。牛顿法如果收敛,收敛阶数至少是2。但是,当目标函数为一般性的非线性函数时,牛顿法就不能保证...

2016-12-25 13:04:12

阅读数:776

评论数:0

最优化学习笔记(十四)——共轭梯度法

共轭梯度法不需要预先给定Q\boldsymbol{Q}共轭方向,而是随着迭代的进行不断产生Q\boldsymbol{Q}共轭方向。在每次的迭代中,利用上一个搜索方向和目标函数在当前迭代点的梯度向量 之间的线性组合构造一个新的方向,使其与前边已经产生的搜索方向组成Q\boldsymbol{Q}共轭方...

2016-12-18 21:32:04

阅读数:6078

评论数:0

机器学习笔记(二十)——求解最大熵模型

一、问题的引出    最大熵模型的学习过程就是求解最大熵模型的过程。最大熵模型的学习可以形式化为约束最优化问题。     对于给定的训练数据集T={(x1,y1),(x2,y2),…,(xn,yn)}T=\{(x_1,y_1),(x_2,y_2),\dots,(x_n,y_n)\}及特征函数fi...

2016-12-11 18:44:32

阅读数:901

评论数:0

机器学习笔记(十九)——最大熵原理和模型定义

一、最大熵原理    最大熵原理是概率模型学习的一个准则。最大熵原理认为,在学习概率模型时,在所有可能的概率分布中,熵最大的模型是最好的模型。通常用约束条件来确定概率模型的集合,所以,最大熵模型也可以表述为在满足约束条件的模型集合中选取熵最大的模型。     假设离散型随机变量XX的概率分布式P...

2016-11-27 18:57:13

阅读数:4995

评论数:0

最优化学习笔记(十三)——基本共轭方向算法(扩张子空间定理)

由上节我们得出的一个引理: 引理 在共轭方向算法中, 对于所有的k,0≤k≤n−1,0≤i≤kk,0≤k≤n−1,0≤i≤k 都有 : g(k+1)Td(i)=0 \boldsymbol{g}^{(k+1)T}\boldsymbol{d}^{(i)}=0 由上可知:g(k+1)\bold...

2016-11-19 11:37:29

阅读数:637

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭