- 博客(15)
- 收藏
- 关注
原创 Linux常用命令大全(一篇足矣)
建议收藏,一篇足矣esc:退出文件编辑第一步q:退出wq:保存并退出系统信息arch 显示机器的处理器架构uname -m 显示机器的处理器架构uname -r 显示正在使用的内核版本dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)hdparm -i /dev/hda 罗列一个磁盘的架构特性hdparm -tT /dev/sda 在磁盘上执行测试性读取操作cat /proc/cpuinfo 显示CPU info的信息cat /proc/in...
2021-12-25 08:12:15 414
原创 ESIM(Enhanced Sequential Inference Model)- 模型详解
ESIM(Enhanced Sequential Inference Model)是一个综合应用了BiLSTM和注意力机制的模型,在文本匹配中效果十分强大,也是目前为止非常最复杂的模型。
2021-12-24 08:58:04 5239
原创 想了解API接口,这一篇就够了
API全称是:Application Programming Interface,即:应用程序接口。开发人员可以使用这些API接口进行编程开发,而又无需访问源码,或理解内部工作机制的细节。
2021-12-23 08:47:26 52724 10
原创 BERT预训练模型(Bidirectional Encoder Representations from Transformers)-原理详解
BERT(BidirectionalEncoderRepresentations fromTransformers)近期提出之后,作为一个Word2Vec的替代者,其在NLP领域的11个方向大幅刷新了精度,可以说是近年来自残差网络最优突破性的一项技术了
2021-12-21 15:24:46 3433
原创 史上最小白之《Word2vec》详解
谷歌2013年提出来的NLP工具,它的特点就是可以将单词转化为向量表示,这样就可以通过向量与向量之间的距离来度量它们之间的相似度,从而发现他们之间存在的潜在关系。虽然现在深度学习比较广泛,但是其实word2vec并不是深度学习,因为在这个word2vec中,只是使用到了浅层的神经网络,同时它是计算词向量的一种开源工具,当我们说word2vec模型的时候,其实指的使它背后的CBOW和skip-gram算法,而word2vec本身并不是模型或者算法
2021-12-21 15:18:57 4480
原创 Transformer+Embedding+Self-Attention原理详解
Transformer:编码器:多头的self-Attention + 残差 + 前馈神经网络 + 残差解码器:多头遮蔽的self-Attention + 残差 + 前馈 + 残差 + encoder-decoder Attention + 残差encoder-decoder Attention就是一个普通的Attention是判断编码的输出C和当前翻译的一个Attention关系的。因此解码器相比较编码器来说仅仅多了一个mask和encoder-decoder Attention。
2021-12-21 08:59:02 6215 1
原创 编解码(seq2seq)+注意机制(attention) 详细讲解
Seq2Seq 是一种循环神经网络的变种,包括编码器 (Encoder) 和解码器 (Decoder) 两部分。Seq2Seq 是自然语言处理中的一种重要模型,可以用于机器翻译、对话系统、自动文摘。
2021-12-20 08:26:09 3360 1
原创 深度学习--神经网络(基础讲解)
首先明白我们的目的是想要做人工智能,既然是人工智能就想让机器去模仿人,那么人最大的特点就是有很多的神经元,从而可以思考,因此基于这个想法,搭建出来了人工神经网络,有大量的节点构建出来的一个网络,不过这毕竟是个抽象的概念,节点通常就用来储存数字啦,而边一般都用来储存权重,以及传给哪些神经元。
2021-12-18 08:29:57 3692 1
原创 强化学习 (Reinforcement Learning)
强化学习:强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益。其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为。
2021-12-18 08:29:02 6066
原创 深度学习--循环神经网络(Recurrent Neural Network)
RNN(Recurrent Neural Network)是怎么来的?一些应用场景,比如说写论文,写诗,翻译等等。
2021-12-17 20:11:56 1357
原创 深度学习--生成对抗网络(Generative Adversarial Nets)
对抗网络——GAN人脸检测,图像识别,语音识别等等,人类或者机器总是在现有的事物的基础上做出描述和判断,那么大家考虑一个东西,能不能创造出这个世界上不存在的东西?——————————GAN(生成对抗网络)
2021-12-17 16:05:52 2070
原创 深度学习--自编码器(AutoEncoder)
自编码器:自编码器是用于无监督学习,高效编码的神经网络,自动编码器的目的就在于,学习一组数据的编码,通常用于数据的降维,自编码是一种无监督的算法,网络分为:输入层,隐藏层(编码层),解码层,该网络的目的在于重构输入,使其隐藏层的数据表示更加好,利用了反向传播,将输入值和目标值设置一样,就可以不断的进行迭代训练。
2021-12-17 15:52:28 11323
原创 机器学习--朴素贝叶斯(Naive Bayes)
贝叶斯网络,马尔可夫网络区别:贝叶斯网络可以用有向图结构表示,而马尔可夫网络可以表示一个无向图表示准确的来说:概率图模型包括了朴素贝叶斯,最大熵模型,隐马尔可夫模型,条件随机场模型,主题模型等等。
2021-12-17 15:26:40 574
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人