深度学习
文章平均质量分 88
孟菜菜
根本卷不动
展开
-
ESIM(Enhanced Sequential Inference Model)- 模型详解
ESIM(Enhanced Sequential Inference Model)是一个综合应用了BiLSTM和注意力机制的模型,在文本匹配中效果十分强大,也是目前为止非常最复杂的模型。原创 2021-12-24 08:58:04 · 5252 阅读 · 0 评论 -
BERT预训练模型(Bidirectional Encoder Representations from Transformers)-原理详解
BERT(BidirectionalEncoderRepresentations fromTransformers)近期提出之后,作为一个Word2Vec的替代者,其在NLP领域的11个方向大幅刷新了精度,可以说是近年来自残差网络最优突破性的一项技术了原创 2021-12-21 15:24:46 · 3438 阅读 · 0 评论 -
史上最小白之《Word2vec》详解
谷歌2013年提出来的NLP工具,它的特点就是可以将单词转化为向量表示,这样就可以通过向量与向量之间的距离来度量它们之间的相似度,从而发现他们之间存在的潜在关系。虽然现在深度学习比较广泛,但是其实word2vec并不是深度学习,因为在这个word2vec中,只是使用到了浅层的神经网络,同时它是计算词向量的一种开源工具,当我们说word2vec模型的时候,其实指的使它背后的CBOW和skip-gram算法,而word2vec本身并不是模型或者算法原创 2021-12-21 15:18:57 · 4489 阅读 · 0 评论 -
Transformer+Embedding+Self-Attention原理详解
Transformer:编码器:多头的self-Attention + 残差 + 前馈神经网络 + 残差解码器:多头遮蔽的self-Attention + 残差 + 前馈 + 残差 + encoder-decoder Attention + 残差encoder-decoder Attention就是一个普通的Attention是判断编码的输出C和当前翻译的一个Attention关系的。因此解码器相比较编码器来说仅仅多了一个mask和encoder-decoder Attention。原创 2021-12-21 08:59:02 · 6248 阅读 · 1 评论 -
编解码(seq2seq)+注意机制(attention) 详细讲解
Seq2Seq 是一种循环神经网络的变种,包括编码器 (Encoder) 和解码器 (Decoder) 两部分。Seq2Seq 是自然语言处理中的一种重要模型,可以用于机器翻译、对话系统、自动文摘。原创 2021-12-20 08:26:09 · 3368 阅读 · 1 评论 -
深度学习--循环神经网络(Recurrent Neural Network)
RNN(Recurrent Neural Network)是怎么来的?一些应用场景,比如说写论文,写诗,翻译等等。原创 2021-12-17 20:11:56 · 1359 阅读 · 0 评论 -
深度学习--神经网络(基础讲解)
首先明白我们的目的是想要做人工智能,既然是人工智能就想让机器去模仿人,那么人最大的特点就是有很多的神经元,从而可以思考,因此基于这个想法,搭建出来了人工神经网络,有大量的节点构建出来的一个网络,不过这毕竟是个抽象的概念,节点通常就用来储存数字啦,而边一般都用来储存权重,以及传给哪些神经元。原创 2021-12-18 08:29:57 · 3699 阅读 · 1 评论 -
深度学习--生成对抗网络(Generative Adversarial Nets)
对抗网络——GAN人脸检测,图像识别,语音识别等等,人类或者机器总是在现有的事物的基础上做出描述和判断,那么大家考虑一个东西,能不能创造出这个世界上不存在的东西?——————————GAN(生成对抗网络)原创 2021-12-17 16:05:52 · 2071 阅读 · 0 评论 -
深度学习--自编码器(AutoEncoder)
自编码器:自编码器是用于无监督学习,高效编码的神经网络,自动编码器的目的就在于,学习一组数据的编码,通常用于数据的降维,自编码是一种无监督的算法,网络分为:输入层,隐藏层(编码层),解码层,该网络的目的在于重构输入,使其隐藏层的数据表示更加好,利用了反向传播,将输入值和目标值设置一样,就可以不断的进行迭代训练。原创 2021-12-17 15:52:28 · 11335 阅读 · 0 评论