知识点一:算法复杂度分析

前言

数据结构和算法本身解决的是“快”和“省”的问题,即如何让代码运行得更快,如何让代码更省存储空间。所以,执行效率是算法一个非常重要的考量指标。那如何来衡量所编写的算法代码的执行效率呢?

其实,只要讲到数据结构与算法,就一定离不开时间、空间复杂度分析。复杂度分析是整个算法学习的精髓

为什么需要复杂度分析?

你可能会有些疑惑,把代码跑一遍,通过统计、监控,就能得到算法执行的时间和占用的内存大小。为什么还要做时间、空间复杂度分析呢?这种分析方法能比我实实在在跑一遍得到的数据更准确吗?

可以肯定地说,这种评估算法执行效率的方法是正确的。很多数据结构和算法书籍还给这种方法起了一个名字——事后统计法。但是,这种统计方法有非常大的局限性。

  1. 测试结果非常依赖测试环境
    测试环境中硬件的不同会对测试结果有很大的影响。比如,我们拿同样一段代码,分别用 Intel Core i9 处理器和 Intel Core i3 处理器来运行,不用说,i9 处理器要比 i3 处理器执行的速度快很多。还有,比如原本在这台机器上 a 代码执行的速度比 b 代码要快,等我们换到另一台机器上时,可能会有截然相反的结果。
  2. 测试结果受数据规模的影响很大
    对同一个排序算法,待排序数据的有序度不一样,排序的执行时间就会有很大的差别。极端情况下,如果数据已经是有序的,那排序算法不需要做任何操作,执行时间就会非常短。除此之外,如果测试数据规模太小,测试结果可能无法真实地反应算法的性能。比如,对于小规模的数据排序,插入排序可能反倒会比快速排序要快!

所以,我们需要一个不用具体的测试数据来测试,就可以粗略地估计算法的执行效率的方法。这就是所谓的时间、空间复杂度分析方法。

大O复杂度表示法

算法的执行效率,粗略地讲,就是算法代码执行的时间。但是,如何在不运行代码的情况下,用“肉眼”得到一段代码的执行时间呢?

这里有段非常简单的代码,求 1,2,3…n 的累加和。

 int cal(int n) {
   
   int sum = 0;
   int i = 1;
   for (; i <= n; ++i) {
   
     sum = sum + i;
   }
   return sum;
 }

从 CPU 的角度来看,这段代码的每一行都执行着类似的操作:读数据-运算-写数据。尽管每行代码对应的 CPU 执行的个数、执行的时间都不一样,但是,这里只是粗略估计,所以可以假设每行代码执行的时间都一样,为 单位时间 unit_time。在这个假设的基础之上,这段代码的总执行时间是多少呢?

第 2、3 行代码分别需要 1 个 unit_time 的执行时间,第 4、5 行都运行了 n 遍,所以需要 2n*unit_time 的执行时间,所以这段代码总的执行时间就是 (2n+2)*unit_time。

按照这个分析思路,我们再来看这段代码。

 int cal(int n) {
   
   int sum = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) {
   
     j = 1;
     for (; j <= n; ++j) {
   
       sum = sum +  i * j;
     }
   }
 }

依旧假设每个语句的执行时间是 unit_time。那这段代码的总执行时间 T(n) 是多少呢?

第 2、3、4 行代码,每行都需要 1 个 unit_time 的执行时间,第 5、6 行代码循环执行了 n 遍,需要 2n * unit_time 的执行时间,第 7、8 行代码循环执行了 n2遍,所以需要 2n2* unit_time 的执行时间。所以,整段代码总的执行时间 T(n) = (2n2+2n+3)*unit_time。

尽管我们不知道 unit_time 的具体值,但是通过这两段代码执行时间的推导过程,我们可以得到一个非常重要的规律,那就是,所有代码的执行时间 T(n) 与每行代码的执行次数 n 成正比

可以把这个规律总结成一个公式:
在这里插入图片描述
其中,T(n) 我们已经讲过了,它表示代码执行的时间;n 表示数据规模的大小;f(n) 表示每行代码执行的次数总和。因为这是一个公式,所以用 f(n) 来表示。公式中的 O,表示代码的执行时间 T(n) 与 f(n) 表达式成正比。

所以,第一个例子中的 T(n) = O(2n+2),第二个例子中的 T(n) = O(2n^2+2n+3)。这就是大 O 时间复杂度表示法。大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度

当 n 很大时,你可以把它想象成 10000、100000。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了,如果用大 O 表示法表示刚讲的那两段代码的时间复杂度,就可以记为:T(n) = O(n); T(n) = O(n2)。

时间复杂度分析

1. 只关注循环执行次数最多的一段代码

大 O 这种复杂度表示方法只是表示一种变化趋势。我们通常会忽略掉公式中的常量、低阶、系数,只需要记录一个最大阶的量级就可以了。所以,我们在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了。这段核心代码执行次数的 n 的量级,就是整段要分析代码的时间复杂度。

2. 加法法则:总复杂度等于量级最大的那段代码的复杂度

int cal(int n) {
   
   int sum_1 = 0;
   int p = 1;
   for (; p < 100; ++p) {
   
     sum_1 = sum_1 + p;
   }

   int sum_2 = 0;
   int q = 1;
   for (; q < n; ++q) {
   
     sum_2 = sum_2 + q;
   }
 
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值