前言
魔兽世界、仙剑奇侠传这类 MMRPG(Multiplayer Online Role-PlayingGame) 游戏中,有一个非常重要的功能,那就是人物角色的自动寻路。当人物处于游戏地图中的某个位置的时候,我们用鼠标点击另外一个相对较远的位置,人物就会自动地绕过障碍物走过去。这个功能是怎么实现的呢?
路径搜索问题
实际上,这是一个非常典型的路径搜索问题。人物的起点就是他当下所在的位置,终点就是鼠标点击的位置。我们需要在地图中,找一条从起点到终点的路径。这条路径要绕过地图中所有障碍物,并且走的路不能太绕。
理论上讲,最短路径显然是最聪明的走法,是这个问题的最优解。不过,在之前最优出行路线规划的问题中,我们也讲过,如果为了计算两点之间的最短路径,在一个超级大图上动用 Dijkstra 算法,遍历所有的顶点和边,显然会非常耗时。在真实的软件开发中,我们所面对的是超级大的地图和海量的寻路请求,如果算法的执行效率太低,这显然是无法接受的。
其实,像出行路线规划、游戏寻路等这些真实软件开发中的问题,一般情况下,我们都不需要非得求出最优解(也就是最短路径)。在权衡路线规划质量和执行效率的情况下,我们只需要寻求一个次优解就足够了。那么,如何快速找出一条接近于最短路线的次优路线呢?这就要用到 A* 算法了。
启发式搜索算法
在介绍A* 算法之前,先介绍一下启发式搜索算法。不过在说它之前,我们还要先了解一下状态空间搜索。
状态空间搜索,就是将一个问题的求解过程表现为从初始状态到目标状态寻找一条路径的过程。通俗点说,就是要在两点之间求一条线路,这两点是问题的开始和问题的结果,而这一线路不一定是直线,可以是曲折的。由于求解问题的过程中分支有很多(即求解方式有很多种),到达目标状态的方式也就有很多,这主要是由于求解过程中求解条件的不确定性和不完备性造成的。求解的路径很多,这就构成了一个图,我们说这个图就是状态空间。问题的求解实际上就是在这个图中找到一条路径可以从问题的开始到问题的结果。这个寻找的过程就是状态空间搜索。
常用的状态空间搜索有广度优先搜索和深度优先搜索,但是它们存在着一个很大的缺陷,就是它们都是在一个给定的状态空间中穷举,都是根据搜索的顺序依次进行搜索,称为盲目搜索,在状态空间不大的时候可以用,但是如果状态空间非常大并且不可预测的情况下就不可取了,它们的效率会非常低。这时就需要用到启发式搜索。
启发式搜索算法,就是在状态空间中先对每一条搜索分支进行评估,得到最好的分支,再从这个分支继续搜索从而到达目标,这样可以有效省略大量无谓的搜索路径,大大提高了搜索效率。在启发式搜索中,对分支的评估是非常重要的,启发式搜索算法定义了一个估价函数 f(x),与问题相关的启发式信息都被计算为一定的 f(x) 值,引入到搜索过程中。f(x) = g(x) + h(x),其中 f(x) 是节点 x的估价函数,g(x)是在状态空间中从初始节点到节点 x的实际代价,h(x)是从节点 x到目标节点的最佳路径的估计代价。g(x)是已知的,所以在这里主要是 h(x) 体现了搜索的启发信息,h(x)专业的叫法是启发函数。换句话说,g(x)代表了搜索的广度的优先趋势。但是当 h(x) >> g(x)时,可以忽略g(x),从而提高效率。
A* 算法
A* 算法正是利用启发式搜索策略来选择最优的扩展节点,从而提升效率的。实际上,A* 算法就是在 Dijkstra 算法的基础上进行优化和改造。
回顾一下 Dijkstra 算法的实现思路,其实有点儿类似广度优先搜索(BFS)算法,它每次找到跟起点最近的顶点,然后往外扩展。这种往外扩展的思路,其实有些盲目。为什么这么说呢?举一个例子,下面这个图对应一个真实的地图,每个顶点在地图中的位置,我们用一个二维坐标(x,y)来表示,其中,x 表示横坐标,y 表示纵坐标。每条边表示一条路,边上的权值代表路径的长度。
在 Dijkstra 算法的实现思路中,我们用一个优先级队列,来记录已经遍历到的顶点以及这个顶点与起点之间的路径长度。顶点与起点间的路径长度越小,越先被从优先级队列中取出来扩展,从图中举的例子可以看出,尽管我们期望找的是从起点 s 到终点 t 的路线,但是最先被搜索到的顶点依次是 1,2,3。这个搜索方向跟我们期望的路线方向是反着的,路线搜索的方向明显“跑偏”了。之所以会“跑偏”,那是因为我们是按照顶点与起点的路径长度的大小,来安排出队列顺序的。与起点越近的顶点,就会越早出队列。我们并没有考虑到这个顶点到终点的距离,所以,在地图中,尽管 1,2,3 三个顶点离起始顶点最近,但离终点却越来越远。
如果我们综合更多的因素,把这个顶点到终点可能还要走多远,也考虑进去,综合来判断哪个顶点该先出队列,那是不是就可以避免“跑偏”呢?
当我们遍历到某个顶点的时候,从起点走到这个顶点的路径长度是确定的,我们记作 g(i)(i 表示顶点编号)。但是,从这个顶点到终点的路径长度是未知的。虽然确切的值无法提前知道,但是我们可以用其他估计值来代替。这里我们可以通过这个顶点跟终点之间的直线距离,也就是欧几里得距离,来近似地估计这个顶点跟终点之间的路径长度(注意:路径长度跟直线距离是两个概念)。我们把这个距离记作 h(i)(i 表示这个顶点的编号),h(i) 专业的叫法是启发函数(heuristic function)。
由于欧几里得距离的计算公式,会涉及比较耗时的开根号计算,所以,我们一般通过另外一个更加简单的距离计算公式,那就是曼哈顿距离(Manhattan distance)。曼哈顿距离是两点之间横纵坐标的距离之和。计算的过程只涉及加减法、符号位反转,所以比欧几里得距离更加高效。
int hManhattan(Vertex v1, Vertex v2) {
// Vertex表示顶点
return Math.abs(v1.x - v2.x) + Math.abs(v1.y - v2.y);
}
原来在 Dijkstra 算法中,只是单纯地通过顶点 i 与起点之间的路径长度 g(i),来判断谁先出队列,现在有了这个顶点到终点的路径长度估计值,我们可以通过两者之和 f(i)=g(i)+h(i),来判断哪个顶点该最先出队列。综合两部分,我们就能有效避免刚刚讲的“跑偏”。这里 f(i) 的专业叫法是估价函数(evaluation function)。
从刚刚的描述,我们可以发现,A 算法实际上就只是对 Dijkstra 算法的简单改造*。实际上,代码实现方面,我们也只需要稍微改动几行代码,就能把 Dijkstra 算法的代码实现,改成 A* 算法的代码实现。将整个地图抽象成一个有向有权图的代码实现如下:
public class Graph {
// 有向有权图的邻接表存储方法
private LinkedList<Edge> adj[]; // 邻接表
private int v; // 顶点个数
public Graph(int v) {